Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data
Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Grimm, S. Bruckner, S. Kanitsar, A. Groller, E. |
description | Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform high-quality rendering of very large medical data in real-time on commodity computers. For large medical data such as computed tomographic (CT) angiography run-offs (512 /spl times/ 512 /spl times/ 1202) we achieve rendering times up to 2.5 fps on a commodity notebook. We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require just a small extra storage of approximately 10%. |
doi_str_mv | 10.1109/SVVG.2004.8 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17809966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1374278</ieee_id><sourcerecordid>17809966</sourcerecordid><originalsourceid>FETCH-LOGICAL-i242t-82f79bfb815f5f4a0c8849d7641de4b70d9422c37892aa6fee13d0bb3857d1b73</originalsourceid><addsrcrecordid>eNpFUE1LAzEUDIig1J48esnF49Z8dZMcpWgVKgraXsvb5KVGtrs1yQr99y5U8DEwDDMMzCPkmrMZ58zevW82y5lgTM3MGZlabdgIabTh4oJMc_5i40lb10ZfEnzBfZ-OFEOILmJXKDiHLSYose9oLmlwZUiYKXSeFnSfXfweRhn6RBdv66qBjJ7-9O2wR5rg6CCX2O1oH2gLaYfUQ4Erch6gzTj94wlZPz58LJ6q1evyeXG_qqJQolRGBG2b0Bg-D_OggDljlPW6VtyjajTzVgnhpDZWANQBkUvPmkaaufa80XJCbk-9B8gO2pCgczFvDynuIR23fHyEHYePuZtTLiLivy21EtrIX4xLYiA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Grimm, S. ; Bruckner, S. ; Kanitsar, A. ; Groller, E.</creator><creatorcontrib>Grimm, S. ; Bruckner, S. ; Kanitsar, A. ; Groller, E.</creatorcontrib><description>Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform high-quality rendering of very large medical data in real-time on commodity computers. For large medical data such as computed tomographic (CT) angiography run-offs (512 /spl times/ 512 /spl times/ 1202) we achieve rendering times up to 2.5 fps on a commodity notebook. We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require just a small extra storage of approximately 10%.</description><identifier>ISBN: 9780780387812</identifier><identifier>ISBN: 0780387813</identifier><identifier>DOI: 10.1109/SVVG.2004.8</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Acceleration ; acceleration techniques ; Angiography ; Biological and medical sciences ; Biomedical imaging ; Computed tomography ; Computer graphics ; Computerized, statistical medical data processing and models in biomedicine ; Data visualization ; Hardware ; High performance computing ; large data ; Medical management aid. Diagnosis aid ; Medical sciences ; Rendering (computer graphics) ; Space technology ; volume raycasting</subject><ispartof>2004 IEEE Symposium on Volume Visualization and Graphics, 2004, p.1-8</ispartof><rights>2006 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1374278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1374278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17809966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimm, S.</creatorcontrib><creatorcontrib>Bruckner, S.</creatorcontrib><creatorcontrib>Kanitsar, A.</creatorcontrib><creatorcontrib>Groller, E.</creatorcontrib><title>Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data</title><title>2004 IEEE Symposium on Volume Visualization and Graphics</title><addtitle>SVVG</addtitle><description>Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform high-quality rendering of very large medical data in real-time on commodity computers. For large medical data such as computed tomographic (CT) angiography run-offs (512 /spl times/ 512 /spl times/ 1202) we achieve rendering times up to 2.5 fps on a commodity notebook. We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require just a small extra storage of approximately 10%.</description><subject>Acceleration</subject><subject>acceleration techniques</subject><subject>Angiography</subject><subject>Biological and medical sciences</subject><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Computer graphics</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Data visualization</subject><subject>Hardware</subject><subject>High performance computing</subject><subject>large data</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Rendering (computer graphics)</subject><subject>Space technology</subject><subject>volume raycasting</subject><isbn>9780780387812</isbn><isbn>0780387813</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE1LAzEUDIig1J48esnF49Z8dZMcpWgVKgraXsvb5KVGtrs1yQr99y5U8DEwDDMMzCPkmrMZ58zevW82y5lgTM3MGZlabdgIabTh4oJMc_5i40lb10ZfEnzBfZ-OFEOILmJXKDiHLSYose9oLmlwZUiYKXSeFnSfXfweRhn6RBdv66qBjJ7-9O2wR5rg6CCX2O1oH2gLaYfUQ4Erch6gzTj94wlZPz58LJ6q1evyeXG_qqJQolRGBG2b0Bg-D_OggDljlPW6VtyjajTzVgnhpDZWANQBkUvPmkaaufa80XJCbk-9B8gO2pCgczFvDynuIR23fHyEHYePuZtTLiLivy21EtrIX4xLYiA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Grimm, S.</creator><creator>Bruckner, S.</creator><creator>Kanitsar, A.</creator><creator>Groller, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data</title><author>Grimm, S. ; Bruckner, S. ; Kanitsar, A. ; Groller, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i242t-82f79bfb815f5f4a0c8849d7641de4b70d9422c37892aa6fee13d0bb3857d1b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acceleration</topic><topic>acceleration techniques</topic><topic>Angiography</topic><topic>Biological and medical sciences</topic><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Computer graphics</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Data visualization</topic><topic>Hardware</topic><topic>High performance computing</topic><topic>large data</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Rendering (computer graphics)</topic><topic>Space technology</topic><topic>volume raycasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Grimm, S.</creatorcontrib><creatorcontrib>Bruckner, S.</creatorcontrib><creatorcontrib>Kanitsar, A.</creatorcontrib><creatorcontrib>Groller, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grimm, S.</au><au>Bruckner, S.</au><au>Kanitsar, A.</au><au>Groller, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data</atitle><btitle>2004 IEEE Symposium on Volume Visualization and Graphics</btitle><stitle>SVVG</stitle><date>2004</date><risdate>2004</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>9780780387812</isbn><isbn>0780387813</isbn><abstract>Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform high-quality rendering of very large medical data in real-time on commodity computers. For large medical data such as computed tomographic (CT) angiography run-offs (512 /spl times/ 512 /spl times/ 1202) we achieve rendering times up to 2.5 fps on a commodity notebook. We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require just a small extra storage of approximately 10%.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/SVVG.2004.8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780387812 |
ispartof | 2004 IEEE Symposium on Volume Visualization and Graphics, 2004, p.1-8 |
issn | |
language | eng |
recordid | cdi_pascalfrancis_primary_17809966 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration acceleration techniques Angiography Biological and medical sciences Biomedical imaging Computed tomography Computer graphics Computerized, statistical medical data processing and models in biomedicine Data visualization Hardware High performance computing large data Medical management aid. Diagnosis aid Medical sciences Rendering (computer graphics) Space technology volume raycasting |
title | Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Memory%20efficient%20acceleration%20structures%20and%20techniques%20for%20CPU-based%20volume%20raycasting%20of%20large%20data&rft.btitle=2004%20IEEE%20Symposium%20on%20Volume%20Visualization%20and%20Graphics&rft.au=Grimm,%20S.&rft.date=2004&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=9780780387812&rft.isbn_list=0780387813&rft_id=info:doi/10.1109/SVVG.2004.8&rft_dat=%3Cpascalfrancis_6IE%3E17809966%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1374278&rfr_iscdi=true |