Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data

Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Grimm, S., Bruckner, S., Kanitsar, A., Groller, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Grimm, S.
Bruckner, S.
Kanitsar, A.
Groller, E.
description Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform high-quality rendering of very large medical data in real-time on commodity computers. For large medical data such as computed tomographic (CT) angiography run-offs (512 /spl times/ 512 /spl times/ 1202) we achieve rendering times up to 2.5 fps on a commodity notebook. We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require just a small extra storage of approximately 10%.
doi_str_mv 10.1109/SVVG.2004.8
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17809966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1374278</ieee_id><sourcerecordid>17809966</sourcerecordid><originalsourceid>FETCH-LOGICAL-i242t-82f79bfb815f5f4a0c8849d7641de4b70d9422c37892aa6fee13d0bb3857d1b73</originalsourceid><addsrcrecordid>eNpFUE1LAzEUDIig1J48esnF49Z8dZMcpWgVKgraXsvb5KVGtrs1yQr99y5U8DEwDDMMzCPkmrMZ58zevW82y5lgTM3MGZlabdgIabTh4oJMc_5i40lb10ZfEnzBfZ-OFEOILmJXKDiHLSYose9oLmlwZUiYKXSeFnSfXfweRhn6RBdv66qBjJ7-9O2wR5rg6CCX2O1oH2gLaYfUQ4Erch6gzTj94wlZPz58LJ6q1evyeXG_qqJQolRGBG2b0Bg-D_OggDljlPW6VtyjajTzVgnhpDZWANQBkUvPmkaaufa80XJCbk-9B8gO2pCgczFvDynuIR23fHyEHYePuZtTLiLivy21EtrIX4xLYiA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Grimm, S. ; Bruckner, S. ; Kanitsar, A. ; Groller, E.</creator><creatorcontrib>Grimm, S. ; Bruckner, S. ; Kanitsar, A. ; Groller, E.</creatorcontrib><description>Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform high-quality rendering of very large medical data in real-time on commodity computers. For large medical data such as computed tomographic (CT) angiography run-offs (512 /spl times/ 512 /spl times/ 1202) we achieve rendering times up to 2.5 fps on a commodity notebook. We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require just a small extra storage of approximately 10%.</description><identifier>ISBN: 9780780387812</identifier><identifier>ISBN: 0780387813</identifier><identifier>DOI: 10.1109/SVVG.2004.8</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Acceleration ; acceleration techniques ; Angiography ; Biological and medical sciences ; Biomedical imaging ; Computed tomography ; Computer graphics ; Computerized, statistical medical data processing and models in biomedicine ; Data visualization ; Hardware ; High performance computing ; large data ; Medical management aid. Diagnosis aid ; Medical sciences ; Rendering (computer graphics) ; Space technology ; volume raycasting</subject><ispartof>2004 IEEE Symposium on Volume Visualization and Graphics, 2004, p.1-8</ispartof><rights>2006 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1374278$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1374278$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17809966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimm, S.</creatorcontrib><creatorcontrib>Bruckner, S.</creatorcontrib><creatorcontrib>Kanitsar, A.</creatorcontrib><creatorcontrib>Groller, E.</creatorcontrib><title>Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data</title><title>2004 IEEE Symposium on Volume Visualization and Graphics</title><addtitle>SVVG</addtitle><description>Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform high-quality rendering of very large medical data in real-time on commodity computers. For large medical data such as computed tomographic (CT) angiography run-offs (512 /spl times/ 512 /spl times/ 1202) we achieve rendering times up to 2.5 fps on a commodity notebook. We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require just a small extra storage of approximately 10%.</description><subject>Acceleration</subject><subject>acceleration techniques</subject><subject>Angiography</subject><subject>Biological and medical sciences</subject><subject>Biomedical imaging</subject><subject>Computed tomography</subject><subject>Computer graphics</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Data visualization</subject><subject>Hardware</subject><subject>High performance computing</subject><subject>large data</subject><subject>Medical management aid. Diagnosis aid</subject><subject>Medical sciences</subject><subject>Rendering (computer graphics)</subject><subject>Space technology</subject><subject>volume raycasting</subject><isbn>9780780387812</isbn><isbn>0780387813</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE1LAzEUDIig1J48esnF49Z8dZMcpWgVKgraXsvb5KVGtrs1yQr99y5U8DEwDDMMzCPkmrMZ58zevW82y5lgTM3MGZlabdgIabTh4oJMc_5i40lb10ZfEnzBfZ-OFEOILmJXKDiHLSYose9oLmlwZUiYKXSeFnSfXfweRhn6RBdv66qBjJ7-9O2wR5rg6CCX2O1oH2gLaYfUQ4Erch6gzTj94wlZPz58LJ6q1evyeXG_qqJQolRGBG2b0Bg-D_OggDljlPW6VtyjajTzVgnhpDZWANQBkUvPmkaaufa80XJCbk-9B8gO2pCgczFvDynuIR23fHyEHYePuZtTLiLivy21EtrIX4xLYiA</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Grimm, S.</creator><creator>Bruckner, S.</creator><creator>Kanitsar, A.</creator><creator>Groller, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data</title><author>Grimm, S. ; Bruckner, S. ; Kanitsar, A. ; Groller, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i242t-82f79bfb815f5f4a0c8849d7641de4b70d9422c37892aa6fee13d0bb3857d1b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Acceleration</topic><topic>acceleration techniques</topic><topic>Angiography</topic><topic>Biological and medical sciences</topic><topic>Biomedical imaging</topic><topic>Computed tomography</topic><topic>Computer graphics</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Data visualization</topic><topic>Hardware</topic><topic>High performance computing</topic><topic>large data</topic><topic>Medical management aid. Diagnosis aid</topic><topic>Medical sciences</topic><topic>Rendering (computer graphics)</topic><topic>Space technology</topic><topic>volume raycasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Grimm, S.</creatorcontrib><creatorcontrib>Bruckner, S.</creatorcontrib><creatorcontrib>Kanitsar, A.</creatorcontrib><creatorcontrib>Groller, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grimm, S.</au><au>Bruckner, S.</au><au>Kanitsar, A.</au><au>Groller, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data</atitle><btitle>2004 IEEE Symposium on Volume Visualization and Graphics</btitle><stitle>SVVG</stitle><date>2004</date><risdate>2004</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>9780780387812</isbn><isbn>0780387813</isbn><abstract>Most CPU-based volume raycasting approaches achieve high performance by advanced memory layouts, space subdivision, and excessive pre-computing. Such approaches typically need an enormous amount of memory. They are limited to sizes which do not satisfy the medical data used in daily clinical routine. We present a new volume raycasting approach based on image-ordered raycasting with object-ordered processing, which is able to perform high-quality rendering of very large medical data in real-time on commodity computers. For large medical data such as computed tomographic (CT) angiography run-offs (512 /spl times/ 512 /spl times/ 1202) we achieve rendering times up to 2.5 fps on a commodity notebook. We achieve this by introducing a memory efficient acceleration technique for on-the-fly gradient estimation and a memory efficient hybrid removal and skipping technique of transparent regions. We employ quantized binary histograms, granular resolution octrees, and a cell invisibility cache. These acceleration structures require just a small extra storage of approximately 10%.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/SVVG.2004.8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780387812
ispartof 2004 IEEE Symposium on Volume Visualization and Graphics, 2004, p.1-8
issn
language eng
recordid cdi_pascalfrancis_primary_17809966
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
acceleration techniques
Angiography
Biological and medical sciences
Biomedical imaging
Computed tomography
Computer graphics
Computerized, statistical medical data processing and models in biomedicine
Data visualization
Hardware
High performance computing
large data
Medical management aid. Diagnosis aid
Medical sciences
Rendering (computer graphics)
Space technology
volume raycasting
title Memory efficient acceleration structures and techniques for CPU-based volume raycasting of large data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T20%3A25%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Memory%20efficient%20acceleration%20structures%20and%20techniques%20for%20CPU-based%20volume%20raycasting%20of%20large%20data&rft.btitle=2004%20IEEE%20Symposium%20on%20Volume%20Visualization%20and%20Graphics&rft.au=Grimm,%20S.&rft.date=2004&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=9780780387812&rft.isbn_list=0780387813&rft_id=info:doi/10.1109/SVVG.2004.8&rft_dat=%3Cpascalfrancis_6IE%3E17809966%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1374278&rfr_iscdi=true