Adaptive critic learning with fuzzy utility

Adaptive critic methods, which approximate dynamic programming, have been used successfully for solving optimal control problems. The adaptive critic learning algorithm optimizes a secondary utility function that is the sum of the present and all future primary utility. The primary utility function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Matzner, S.A., Shannon, T.T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892 Vol.2
container_issue
container_start_page 888
container_title
container_volume 2
creator Matzner, S.A.
Shannon, T.T.
description Adaptive critic methods, which approximate dynamic programming, have been used successfully for solving optimal control problems. The adaptive critic learning algorithm optimizes a secondary utility function that is the sum of the present and all future primary utility. The primary utility function measures the instantaneous cost incurred for the last action taken and the resulting state. The motivation for using a fuzzy primary utility function comes from the set of control problems for which there is only a qualitative definition of performance - for example, success or failure. Previous work in applying adaptive critic methods to this type of problem showed that a crisp definition of success resulted in solutions that met the control objective, but in an undesirable manner. An appropriate fuzzy utility function, on the other hand, is able to generate the optimal solution. Another motivation for incorporating fuzzy techniques into the utility function is to overcome measurement noise. Measurement noise has a significant adverse effect on the reliability and speed of adaptive critic learning; by incorporating fuzzy sets into the utility function, the effect of the noise can be mitigated.
doi_str_mv 10.1109/NAFIPS.2004.1337421
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17808695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1337421</ieee_id><sourcerecordid>17808695</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-e60b092b034934c5875e53a9e046e2ea153b532cfae86407b6a3d9e1e5de8c913</originalsourceid><addsrcrecordid>eNpFj0FLxDAUhAMiKGt_wV568SSt7_UlbXIsi6sLiwrqeUnTV43UUtqs0v31Fio4DMxhPgZGiDVCigjm9rHc7p5f0gxApkhUyAzPRGQKDbNJU5HDhYjG8RNmSakU0qW4KWvbB__NsRt88C5u2Q6d797jHx8-4uZ4Ok3xMfjWh-lKnDe2HTn6y5V42969bh6S_dP9blPuE4-oQ8I5VGCyCkgakk7pQrEiaxhkzhlbVFQpylxjWecSiiq3VBtGVjVrZ5BW4nrZ7e3obNsMtnN-PPSD_7LDdMD5js6Nmrn1wnlm_q-X6_QLvX9N5g</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive critic learning with fuzzy utility</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matzner, S.A. ; Shannon, T.T.</creator><creatorcontrib>Matzner, S.A. ; Shannon, T.T.</creatorcontrib><description>Adaptive critic methods, which approximate dynamic programming, have been used successfully for solving optimal control problems. The adaptive critic learning algorithm optimizes a secondary utility function that is the sum of the present and all future primary utility. The primary utility function measures the instantaneous cost incurred for the last action taken and the resulting state. The motivation for using a fuzzy primary utility function comes from the set of control problems for which there is only a qualitative definition of performance - for example, success or failure. Previous work in applying adaptive critic methods to this type of problem showed that a crisp definition of success resulted in solutions that met the control objective, but in an undesirable manner. An appropriate fuzzy utility function, on the other hand, is able to generate the optimal solution. Another motivation for incorporating fuzzy techniques into the utility function is to overcome measurement noise. Measurement noise has a significant adverse effect on the reliability and speed of adaptive critic learning; by incorporating fuzzy sets into the utility function, the effect of the noise can be mitigated.</description><identifier>ISBN: 9780780383760</identifier><identifier>ISBN: 0780383761</identifier><identifier>DOI: 10.1109/NAFIPS.2004.1337421</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Adaptive control ; Applied sciences ; Artificial intelligence ; Computational intelligence ; Computer science; control theory; systems ; Control systems ; Cost function ; Dynamic programming ; Exact sciences and technology ; Fuzzy sets ; Neural networks ; Noise measurement ; Optimal control ; Programmable control</subject><ispartof>IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04, 2004, Vol.2, p.888-892 Vol.2</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1337421$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1337421$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17808695$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Matzner, S.A.</creatorcontrib><creatorcontrib>Shannon, T.T.</creatorcontrib><title>Adaptive critic learning with fuzzy utility</title><title>IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04</title><addtitle>NAFIPS</addtitle><description>Adaptive critic methods, which approximate dynamic programming, have been used successfully for solving optimal control problems. The adaptive critic learning algorithm optimizes a secondary utility function that is the sum of the present and all future primary utility. The primary utility function measures the instantaneous cost incurred for the last action taken and the resulting state. The motivation for using a fuzzy primary utility function comes from the set of control problems for which there is only a qualitative definition of performance - for example, success or failure. Previous work in applying adaptive critic methods to this type of problem showed that a crisp definition of success resulted in solutions that met the control objective, but in an undesirable manner. An appropriate fuzzy utility function, on the other hand, is able to generate the optimal solution. Another motivation for incorporating fuzzy techniques into the utility function is to overcome measurement noise. Measurement noise has a significant adverse effect on the reliability and speed of adaptive critic learning; by incorporating fuzzy sets into the utility function, the effect of the noise can be mitigated.</description><subject>Adaptive control</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Cost function</subject><subject>Dynamic programming</subject><subject>Exact sciences and technology</subject><subject>Fuzzy sets</subject><subject>Neural networks</subject><subject>Noise measurement</subject><subject>Optimal control</subject><subject>Programmable control</subject><isbn>9780780383760</isbn><isbn>0780383761</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj0FLxDAUhAMiKGt_wV568SSt7_UlbXIsi6sLiwrqeUnTV43UUtqs0v31Fio4DMxhPgZGiDVCigjm9rHc7p5f0gxApkhUyAzPRGQKDbNJU5HDhYjG8RNmSakU0qW4KWvbB__NsRt88C5u2Q6d797jHx8-4uZ4Ok3xMfjWh-lKnDe2HTn6y5V42969bh6S_dP9blPuE4-oQ8I5VGCyCkgakk7pQrEiaxhkzhlbVFQpylxjWecSiiq3VBtGVjVrZ5BW4nrZ7e3obNsMtnN-PPSD_7LDdMD5js6Nmrn1wnlm_q-X6_QLvX9N5g</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Matzner, S.A.</creator><creator>Shannon, T.T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Adaptive critic learning with fuzzy utility</title><author>Matzner, S.A. ; Shannon, T.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-e60b092b034934c5875e53a9e046e2ea153b532cfae86407b6a3d9e1e5de8c913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adaptive control</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Cost function</topic><topic>Dynamic programming</topic><topic>Exact sciences and technology</topic><topic>Fuzzy sets</topic><topic>Neural networks</topic><topic>Noise measurement</topic><topic>Optimal control</topic><topic>Programmable control</topic><toplevel>online_resources</toplevel><creatorcontrib>Matzner, S.A.</creatorcontrib><creatorcontrib>Shannon, T.T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matzner, S.A.</au><au>Shannon, T.T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive critic learning with fuzzy utility</atitle><btitle>IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04</btitle><stitle>NAFIPS</stitle><date>2004</date><risdate>2004</risdate><volume>2</volume><spage>888</spage><epage>892 Vol.2</epage><pages>888-892 Vol.2</pages><isbn>9780780383760</isbn><isbn>0780383761</isbn><abstract>Adaptive critic methods, which approximate dynamic programming, have been used successfully for solving optimal control problems. The adaptive critic learning algorithm optimizes a secondary utility function that is the sum of the present and all future primary utility. The primary utility function measures the instantaneous cost incurred for the last action taken and the resulting state. The motivation for using a fuzzy primary utility function comes from the set of control problems for which there is only a qualitative definition of performance - for example, success or failure. Previous work in applying adaptive critic methods to this type of problem showed that a crisp definition of success resulted in solutions that met the control objective, but in an undesirable manner. An appropriate fuzzy utility function, on the other hand, is able to generate the optimal solution. Another motivation for incorporating fuzzy techniques into the utility function is to overcome measurement noise. Measurement noise has a significant adverse effect on the reliability and speed of adaptive critic learning; by incorporating fuzzy sets into the utility function, the effect of the noise can be mitigated.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/NAFIPS.2004.1337421</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780383760
ispartof IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04, 2004, Vol.2, p.888-892 Vol.2
issn
language eng
recordid cdi_pascalfrancis_primary_17808695
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
Applied sciences
Artificial intelligence
Computational intelligence
Computer science
control theory
systems
Control systems
Cost function
Dynamic programming
Exact sciences and technology
Fuzzy sets
Neural networks
Noise measurement
Optimal control
Programmable control
title Adaptive critic learning with fuzzy utility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20critic%20learning%20with%20fuzzy%20utility&rft.btitle=IEEE%20Annual%20Meeting%20of%20the%20Fuzzy%20Information,%202004.%20Processing%20NAFIPS%20'04&rft.au=Matzner,%20S.A.&rft.date=2004&rft.volume=2&rft.spage=888&rft.epage=892%20Vol.2&rft.pages=888-892%20Vol.2&rft.isbn=9780780383760&rft.isbn_list=0780383761&rft_id=info:doi/10.1109/NAFIPS.2004.1337421&rft_dat=%3Cpascalfrancis_6IE%3E17808695%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1337421&rfr_iscdi=true