Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints
We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions o...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 1998-11, Vol.23 (4), p.806-831 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 831 |
---|---|
container_issue | 4 |
container_start_page | 806 |
container_title | Mathematics of operations research |
container_volume | 23 |
creator | Bonnans, J. Frederic Cominetti, Roberto Shapiro, Alexander |
description | We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions of approximate optimal solutions, under a directional constraint qualification hypothesis and various second order sufficient conditions that take into account the curvature of the set defining the constraints of the problem. We show how the theory applies to semi-infinite programs in which the contact set is a smooth manifold and the quadratic growth condition in the constraint space holds, and discuss the differentiability of metric projections as well as the Moreau-Yosida regularization. Finally we show how the theory applies to semi-definite optimization. |
doi_str_mv | 10.1287/moor.23.4.806 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1764217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3690633</jstor_id><sourcerecordid>3690633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-86293c5fa526426874e63a5b56488091cff756ca654022f644fc24fc3406847d3</originalsourceid><addsrcrecordid>eNqFkEtrGzEUhUVoIW7aZXddDKWQTcbVW-NlMM0DAg55QHdCkaVYZkZydeUG99dHZhKaXRZCiPOdc68OQl8JnhLaqZ9DSnlK2ZRPOywP0IQIKlvBFfmAJphJ3iopfh-iTwBrjIlQhE_Q3a2LEEr4G8quOY2m30GAJvlmsSlhCP9MCSk21zk99G6A5j4uXW5unU1x2Szy_nHjHre9yc08RSjZhFjgM_roTQ_uy8t9hO7Pft3NL9qrxfnl_PSqtbyTpe0knTErvKl7cio7xZ1kRjwIybsOz4j1XglpjRQcU-ol597SehjHsuNqyY7Q9zF3k9OfrYOi12mb6ydAU0Kl4gzjCrUjZHMCyM7rTQ6DyTtNsN73pve9aco017W3yv94CTVgTe-ziTbAf5OquxJVsW8jtoZS7a8yk7Oawap8Msoh-pQHeHfo8YivwuPqKWSnX32DKau35DPwHJOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212674300</pqid></control><display><type>article</type><title>Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints</title><source>INFORMS PubsOnLine</source><source>JSTOR Mathematics & Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Bonnans, J. Frederic ; Cominetti, Roberto ; Shapiro, Alexander</creator><creatorcontrib>Bonnans, J. Frederic ; Cominetti, Roberto ; Shapiro, Alexander</creatorcontrib><description>We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions of approximate optimal solutions, under a directional constraint qualification hypothesis and various second order sufficient conditions that take into account the curvature of the set defining the constraints of the problem. We show how the theory applies to semi-infinite programs in which the contact set is a smooth manifold and the quadratic growth condition in the constraint space holds, and discuss the differentiability of metric projections as well as the Moreau-Yosida regularization. Finally we show how the theory applies to semi-definite optimization.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.23.4.806</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Banach space ; directional constraint qualification ; directional differentiability ; Exact sciences and technology ; Lagrange multipliers ; Mathematical functions ; Mathematical inequalities ; Mathematical programming ; metric projection ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimal solutions ; optimal value function ; Optimization ; Optimization. Search problems ; parametric optimization ; second order optimality conditions ; semi-definite programming ; semi-infinite programming ; Sensitivity analysis ; Studies ; Sufficient conditions ; Tangents ; Trajectories</subject><ispartof>Mathematics of operations research, 1998-11, Vol.23 (4), p.806-831</ispartof><rights>Copyright 1998 Institute for Operations Research and the Management Sciences</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-86293c5fa526426874e63a5b56488091cff756ca654022f644fc24fc3406847d3</citedby><cites>FETCH-LOGICAL-c486t-86293c5fa526426874e63a5b56488091cff756ca654022f644fc24fc3406847d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3690633$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.23.4.806$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3692,27924,27925,58017,58021,58250,58254,62616</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1764217$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnans, J. Frederic</creatorcontrib><creatorcontrib>Cominetti, Roberto</creatorcontrib><creatorcontrib>Shapiro, Alexander</creatorcontrib><title>Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints</title><title>Mathematics of operations research</title><description>We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions of approximate optimal solutions, under a directional constraint qualification hypothesis and various second order sufficient conditions that take into account the curvature of the set defining the constraints of the problem. We show how the theory applies to semi-infinite programs in which the contact set is a smooth manifold and the quadratic growth condition in the constraint space holds, and discuss the differentiability of metric projections as well as the Moreau-Yosida regularization. Finally we show how the theory applies to semi-definite optimization.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Banach space</subject><subject>directional constraint qualification</subject><subject>directional differentiability</subject><subject>Exact sciences and technology</subject><subject>Lagrange multipliers</subject><subject>Mathematical functions</subject><subject>Mathematical inequalities</subject><subject>Mathematical programming</subject><subject>metric projection</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimal solutions</subject><subject>optimal value function</subject><subject>Optimization</subject><subject>Optimization. Search problems</subject><subject>parametric optimization</subject><subject>second order optimality conditions</subject><subject>semi-definite programming</subject><subject>semi-infinite programming</subject><subject>Sensitivity analysis</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>Tangents</subject><subject>Trajectories</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtrGzEUhUVoIW7aZXddDKWQTcbVW-NlMM0DAg55QHdCkaVYZkZydeUG99dHZhKaXRZCiPOdc68OQl8JnhLaqZ9DSnlK2ZRPOywP0IQIKlvBFfmAJphJ3iopfh-iTwBrjIlQhE_Q3a2LEEr4G8quOY2m30GAJvlmsSlhCP9MCSk21zk99G6A5j4uXW5unU1x2Szy_nHjHre9yc08RSjZhFjgM_roTQ_uy8t9hO7Pft3NL9qrxfnl_PSqtbyTpe0knTErvKl7cio7xZ1kRjwIybsOz4j1XglpjRQcU-ol597SehjHsuNqyY7Q9zF3k9OfrYOi12mb6ydAU0Kl4gzjCrUjZHMCyM7rTQ6DyTtNsN73pve9aco017W3yv94CTVgTe-ziTbAf5OquxJVsW8jtoZS7a8yk7Oawap8Msoh-pQHeHfo8YivwuPqKWSnX32DKau35DPwHJOs</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Bonnans, J. Frederic</creator><creator>Cominetti, Roberto</creator><creator>Shapiro, Alexander</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>19981101</creationdate><title>Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints</title><author>Bonnans, J. Frederic ; Cominetti, Roberto ; Shapiro, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-86293c5fa526426874e63a5b56488091cff756ca654022f644fc24fc3406847d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Banach space</topic><topic>directional constraint qualification</topic><topic>directional differentiability</topic><topic>Exact sciences and technology</topic><topic>Lagrange multipliers</topic><topic>Mathematical functions</topic><topic>Mathematical inequalities</topic><topic>Mathematical programming</topic><topic>metric projection</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimal solutions</topic><topic>optimal value function</topic><topic>Optimization</topic><topic>Optimization. Search problems</topic><topic>parametric optimization</topic><topic>second order optimality conditions</topic><topic>semi-definite programming</topic><topic>semi-infinite programming</topic><topic>Sensitivity analysis</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>Tangents</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnans, J. Frederic</creatorcontrib><creatorcontrib>Cominetti, Roberto</creatorcontrib><creatorcontrib>Shapiro, Alexander</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnans, J. Frederic</au><au>Cominetti, Roberto</au><au>Shapiro, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints</atitle><jtitle>Mathematics of operations research</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>23</volume><issue>4</issue><spage>806</spage><epage>831</epage><pages>806-831</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions of approximate optimal solutions, under a directional constraint qualification hypothesis and various second order sufficient conditions that take into account the curvature of the set defining the constraints of the problem. We show how the theory applies to semi-infinite programs in which the contact set is a smooth manifold and the quadratic growth condition in the constraint space holds, and discuss the differentiability of metric projections as well as the Moreau-Yosida regularization. Finally we show how the theory applies to semi-definite optimization.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/moor.23.4.806</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 1998-11, Vol.23 (4), p.806-831 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_pascalfrancis_primary_1764217 |
source | INFORMS PubsOnLine; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing |
subjects | Algorithms Applied sciences Approximation Banach space directional constraint qualification directional differentiability Exact sciences and technology Lagrange multipliers Mathematical functions Mathematical inequalities Mathematical programming metric projection Operational research and scientific management Operational research. Management science Operations research Optimal solutions optimal value function Optimization Optimization. Search problems parametric optimization second order optimality conditions semi-definite programming semi-infinite programming Sensitivity analysis Studies Sufficient conditions Tangents Trajectories |
title | Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20Analysis%20of%20Optimization%20Problems%20Under%20Second%20Order%20Regular%20Constraints&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Bonnans,%20J.%20Frederic&rft.date=1998-11-01&rft.volume=23&rft.issue=4&rft.spage=806&rft.epage=831&rft.pages=806-831&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.23.4.806&rft_dat=%3Cjstor_pasca%3E3690633%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212674300&rft_id=info:pmid/&rft_jstor_id=3690633&rfr_iscdi=true |