Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints

We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research 1998-11, Vol.23 (4), p.806-831
Hauptverfasser: Bonnans, J. Frederic, Cominetti, Roberto, Shapiro, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 831
container_issue 4
container_start_page 806
container_title Mathematics of operations research
container_volume 23
creator Bonnans, J. Frederic
Cominetti, Roberto
Shapiro, Alexander
description We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions of approximate optimal solutions, under a directional constraint qualification hypothesis and various second order sufficient conditions that take into account the curvature of the set defining the constraints of the problem. We show how the theory applies to semi-infinite programs in which the contact set is a smooth manifold and the quadratic growth condition in the constraint space holds, and discuss the differentiability of metric projections as well as the Moreau-Yosida regularization. Finally we show how the theory applies to semi-definite optimization.
doi_str_mv 10.1287/moor.23.4.806
format Article
fullrecord <record><control><sourceid>jstor_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_1764217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3690633</jstor_id><sourcerecordid>3690633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-86293c5fa526426874e63a5b56488091cff756ca654022f644fc24fc3406847d3</originalsourceid><addsrcrecordid>eNqFkEtrGzEUhUVoIW7aZXddDKWQTcbVW-NlMM0DAg55QHdCkaVYZkZydeUG99dHZhKaXRZCiPOdc68OQl8JnhLaqZ9DSnlK2ZRPOywP0IQIKlvBFfmAJphJ3iopfh-iTwBrjIlQhE_Q3a2LEEr4G8quOY2m30GAJvlmsSlhCP9MCSk21zk99G6A5j4uXW5unU1x2Szy_nHjHre9yc08RSjZhFjgM_roTQ_uy8t9hO7Pft3NL9qrxfnl_PSqtbyTpe0knTErvKl7cio7xZ1kRjwIybsOz4j1XglpjRQcU-ol597SehjHsuNqyY7Q9zF3k9OfrYOi12mb6ydAU0Kl4gzjCrUjZHMCyM7rTQ6DyTtNsN73pve9aco017W3yv94CTVgTe-ziTbAf5OquxJVsW8jtoZS7a8yk7Oawap8Msoh-pQHeHfo8YivwuPqKWSnX32DKau35DPwHJOs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212674300</pqid></control><display><type>article</type><title>Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints</title><source>INFORMS PubsOnLine</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Bonnans, J. Frederic ; Cominetti, Roberto ; Shapiro, Alexander</creator><creatorcontrib>Bonnans, J. Frederic ; Cominetti, Roberto ; Shapiro, Alexander</creatorcontrib><description>We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions of approximate optimal solutions, under a directional constraint qualification hypothesis and various second order sufficient conditions that take into account the curvature of the set defining the constraints of the problem. We show how the theory applies to semi-infinite programs in which the contact set is a smooth manifold and the quadratic growth condition in the constraint space holds, and discuss the differentiability of metric projections as well as the Moreau-Yosida regularization. Finally we show how the theory applies to semi-definite optimization.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.23.4.806</identifier><identifier>CODEN: MOREDQ</identifier><language>eng</language><publisher>Linthicum, MD: INFORMS</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Banach space ; directional constraint qualification ; directional differentiability ; Exact sciences and technology ; Lagrange multipliers ; Mathematical functions ; Mathematical inequalities ; Mathematical programming ; metric projection ; Operational research and scientific management ; Operational research. Management science ; Operations research ; Optimal solutions ; optimal value function ; Optimization ; Optimization. Search problems ; parametric optimization ; second order optimality conditions ; semi-definite programming ; semi-infinite programming ; Sensitivity analysis ; Studies ; Sufficient conditions ; Tangents ; Trajectories</subject><ispartof>Mathematics of operations research, 1998-11, Vol.23 (4), p.806-831</ispartof><rights>Copyright 1998 Institute for Operations Research and the Management Sciences</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Institute for Operations Research and the Management Sciences Nov 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-86293c5fa526426874e63a5b56488091cff756ca654022f644fc24fc3406847d3</citedby><cites>FETCH-LOGICAL-c486t-86293c5fa526426874e63a5b56488091cff756ca654022f644fc24fc3406847d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3690633$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.23.4.806$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,780,784,803,832,3692,27924,27925,58017,58021,58250,58254,62616</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1764217$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonnans, J. Frederic</creatorcontrib><creatorcontrib>Cominetti, Roberto</creatorcontrib><creatorcontrib>Shapiro, Alexander</creatorcontrib><title>Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints</title><title>Mathematics of operations research</title><description>We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions of approximate optimal solutions, under a directional constraint qualification hypothesis and various second order sufficient conditions that take into account the curvature of the set defining the constraints of the problem. We show how the theory applies to semi-infinite programs in which the contact set is a smooth manifold and the quadratic growth condition in the constraint space holds, and discuss the differentiability of metric projections as well as the Moreau-Yosida regularization. Finally we show how the theory applies to semi-definite optimization.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Banach space</subject><subject>directional constraint qualification</subject><subject>directional differentiability</subject><subject>Exact sciences and technology</subject><subject>Lagrange multipliers</subject><subject>Mathematical functions</subject><subject>Mathematical inequalities</subject><subject>Mathematical programming</subject><subject>metric projection</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Operations research</subject><subject>Optimal solutions</subject><subject>optimal value function</subject><subject>Optimization</subject><subject>Optimization. Search problems</subject><subject>parametric optimization</subject><subject>second order optimality conditions</subject><subject>semi-definite programming</subject><subject>semi-infinite programming</subject><subject>Sensitivity analysis</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>Tangents</subject><subject>Trajectories</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtrGzEUhUVoIW7aZXddDKWQTcbVW-NlMM0DAg55QHdCkaVYZkZydeUG99dHZhKaXRZCiPOdc68OQl8JnhLaqZ9DSnlK2ZRPOywP0IQIKlvBFfmAJphJ3iopfh-iTwBrjIlQhE_Q3a2LEEr4G8quOY2m30GAJvlmsSlhCP9MCSk21zk99G6A5j4uXW5unU1x2Szy_nHjHre9yc08RSjZhFjgM_roTQ_uy8t9hO7Pft3NL9qrxfnl_PSqtbyTpe0knTErvKl7cio7xZ1kRjwIybsOz4j1XglpjRQcU-ol597SehjHsuNqyY7Q9zF3k9OfrYOi12mb6ydAU0Kl4gzjCrUjZHMCyM7rTQ6DyTtNsN73pve9aco017W3yv94CTVgTe-ziTbAf5OquxJVsW8jtoZS7a8yk7Oawap8Msoh-pQHeHfo8YivwuPqKWSnX32DKau35DPwHJOs</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Bonnans, J. Frederic</creator><creator>Cominetti, Roberto</creator><creator>Shapiro, Alexander</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>19981101</creationdate><title>Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints</title><author>Bonnans, J. Frederic ; Cominetti, Roberto ; Shapiro, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-86293c5fa526426874e63a5b56488091cff756ca654022f644fc24fc3406847d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Banach space</topic><topic>directional constraint qualification</topic><topic>directional differentiability</topic><topic>Exact sciences and technology</topic><topic>Lagrange multipliers</topic><topic>Mathematical functions</topic><topic>Mathematical inequalities</topic><topic>Mathematical programming</topic><topic>metric projection</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Operations research</topic><topic>Optimal solutions</topic><topic>optimal value function</topic><topic>Optimization</topic><topic>Optimization. Search problems</topic><topic>parametric optimization</topic><topic>second order optimality conditions</topic><topic>semi-definite programming</topic><topic>semi-infinite programming</topic><topic>Sensitivity analysis</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>Tangents</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnans, J. Frederic</creatorcontrib><creatorcontrib>Cominetti, Roberto</creatorcontrib><creatorcontrib>Shapiro, Alexander</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnans, J. Frederic</au><au>Cominetti, Roberto</au><au>Shapiro, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints</atitle><jtitle>Mathematics of operations research</jtitle><date>1998-11-01</date><risdate>1998</risdate><volume>23</volume><issue>4</issue><spage>806</spage><epage>831</epage><pages>806-831</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><coden>MOREDQ</coden><abstract>We present a perturbation theory for finite dimensional optimization problems subject to abstract constraints satisfying a second order regularity condition. This is a technical condition that is always satisfied in the case of semi-definite optimization . We derive Lipschitz and Hölder expansions of approximate optimal solutions, under a directional constraint qualification hypothesis and various second order sufficient conditions that take into account the curvature of the set defining the constraints of the problem. We show how the theory applies to semi-infinite programs in which the contact set is a smooth manifold and the quadratic growth condition in the constraint space holds, and discuss the differentiability of metric projections as well as the Moreau-Yosida regularization. Finally we show how the theory applies to semi-definite optimization.</abstract><cop>Linthicum, MD</cop><pub>INFORMS</pub><doi>10.1287/moor.23.4.806</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0364-765X
ispartof Mathematics of operations research, 1998-11, Vol.23 (4), p.806-831
issn 0364-765X
1526-5471
language eng
recordid cdi_pascalfrancis_primary_1764217
source INFORMS PubsOnLine; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete; JSTOR Archive Collection A-Z Listing
subjects Algorithms
Applied sciences
Approximation
Banach space
directional constraint qualification
directional differentiability
Exact sciences and technology
Lagrange multipliers
Mathematical functions
Mathematical inequalities
Mathematical programming
metric projection
Operational research and scientific management
Operational research. Management science
Operations research
Optimal solutions
optimal value function
Optimization
Optimization. Search problems
parametric optimization
second order optimality conditions
semi-definite programming
semi-infinite programming
Sensitivity analysis
Studies
Sufficient conditions
Tangents
Trajectories
title Sensitivity Analysis of Optimization Problems Under Second Order Regular Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A31%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20Analysis%20of%20Optimization%20Problems%20Under%20Second%20Order%20Regular%20Constraints&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=Bonnans,%20J.%20Frederic&rft.date=1998-11-01&rft.volume=23&rft.issue=4&rft.spage=806&rft.epage=831&rft.pages=806-831&rft.issn=0364-765X&rft.eissn=1526-5471&rft.coden=MOREDQ&rft_id=info:doi/10.1287/moor.23.4.806&rft_dat=%3Cjstor_pasca%3E3690633%3C/jstor_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212674300&rft_id=info:pmid/&rft_jstor_id=3690633&rfr_iscdi=true