Single-Unit Recordings Revisited: Activity in Recurrent Microcircuits

We investigated the relevance of single-unit recordings in the context of dynamical neural systems with recurrent synapses. The present study focuses on modeling a relatively small, biologically-plausible network of neurons. In the absence of any input, the network activity is self-sustained due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mureşan, Raul C., Pipa, Gordon, Wheeler, Diek W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue
container_start_page 153
container_title
container_volume
creator Mureşan, Raul C.
Pipa, Gordon
Wheeler, Diek W.
description We investigated the relevance of single-unit recordings in the context of dynamical neural systems with recurrent synapses. The present study focuses on modeling a relatively small, biologically-plausible network of neurons. In the absence of any input, the network activity is self-sustained due to the resonating properties of the neurons. Recording of single units reveals an increasingly complex response to stimulation as one proceeds higher into the processing stream hierarchy. Results suggest that classical analysis methods, using rate and averaging over trials, fail to describe the dynamics of the system, and instead hide the relevant information embedded in the complex states of the network. We conclude that single-unit recordings, which are still extensively used in experimental neuroscience, need to be more carefully interpreted.
doi_str_mv 10.1007/11550822_25
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17633538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17633538</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-a73af99ab8011e0f943b6fd6400ccfed0720060c27e78ebe77e1fe841d6fda823</originalsourceid><addsrcrecordid>eNpNkEtLAzEUheMLrHVW_oHZuHAxevOaJO5KqQ-oCGrXIZNJSrTOlCQt9N87pQqezT2c83EXB6ErDLcYQNxhzDlIQjThR6hQQlLOgEjBGTtGI1xjXFHK1Am6-CsIPUUjoEAqJRg9R0VKnzCI8ZpROUKz99AtV65adCGXb872sR2CNNhtSCG79r6c2By2Ie_K0O2JTYyuy-VLsLG3IdpNyOkSnXmzSq74vWO0eJh9TJ-q-evj83Qyr9YEq1wZQY1XyjQSMHbgFaNN7duaAVjrXQuCANRgiXBCusYJ4bB3kuF2oIwkdIyuD3_XJlmz8tF0NiS9juHbxJ3GoqaUUzlwNwcuDVW3dFE3ff-VNAa931H_25H-ACHEX9s</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Single-Unit Recordings Revisited: Activity in Recurrent Microcircuits</title><source>Springer Books</source><creator>Mureşan, Raul C. ; Pipa, Gordon ; Wheeler, Diek W.</creator><contributor>Kacprzyk, Janusz ; Oja, Erkki ; Zadrożny, Sławomir ; Duch, Włodzisław</contributor><creatorcontrib>Mureşan, Raul C. ; Pipa, Gordon ; Wheeler, Diek W. ; Kacprzyk, Janusz ; Oja, Erkki ; Zadrożny, Sławomir ; Duch, Włodzisław</creatorcontrib><description>We investigated the relevance of single-unit recordings in the context of dynamical neural systems with recurrent synapses. The present study focuses on modeling a relatively small, biologically-plausible network of neurons. In the absence of any input, the network activity is self-sustained due to the resonating properties of the neurons. Recording of single units reveals an increasingly complex response to stimulation as one proceeds higher into the processing stream hierarchy. Results suggest that classical analysis methods, using rate and averaging over trials, fail to describe the dynamics of the system, and instead hide the relevant information embedded in the complex states of the network. We conclude that single-unit recordings, which are still extensively used in experimental neuroscience, need to be more carefully interpreted.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540287523</identifier><identifier>ISBN: 9783540287520</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540287544</identifier><identifier>EISBN: 354028754X</identifier><identifier>DOI: 10.1007/11550822_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Classical Analysis Method ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Experimental Neuroscience ; Firing Rate ; Multiunit Recording ; Subthreshold Oscillation</subject><ispartof>Artificial Neural Networks: Biological Inspirations – ICANN 2005, 2005, p.153-159</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11550822_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11550822_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17633538$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Kacprzyk, Janusz</contributor><contributor>Oja, Erkki</contributor><contributor>Zadrożny, Sławomir</contributor><contributor>Duch, Włodzisław</contributor><creatorcontrib>Mureşan, Raul C.</creatorcontrib><creatorcontrib>Pipa, Gordon</creatorcontrib><creatorcontrib>Wheeler, Diek W.</creatorcontrib><title>Single-Unit Recordings Revisited: Activity in Recurrent Microcircuits</title><title>Artificial Neural Networks: Biological Inspirations – ICANN 2005</title><description>We investigated the relevance of single-unit recordings in the context of dynamical neural systems with recurrent synapses. The present study focuses on modeling a relatively small, biologically-plausible network of neurons. In the absence of any input, the network activity is self-sustained due to the resonating properties of the neurons. Recording of single units reveals an increasingly complex response to stimulation as one proceeds higher into the processing stream hierarchy. Results suggest that classical analysis methods, using rate and averaging over trials, fail to describe the dynamics of the system, and instead hide the relevant information embedded in the complex states of the network. We conclude that single-unit recordings, which are still extensively used in experimental neuroscience, need to be more carefully interpreted.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classical Analysis Method</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Experimental Neuroscience</subject><subject>Firing Rate</subject><subject>Multiunit Recording</subject><subject>Subthreshold Oscillation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540287523</isbn><isbn>9783540287520</isbn><isbn>9783540287544</isbn><isbn>354028754X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkEtLAzEUheMLrHVW_oHZuHAxevOaJO5KqQ-oCGrXIZNJSrTOlCQt9N87pQqezT2c83EXB6ErDLcYQNxhzDlIQjThR6hQQlLOgEjBGTtGI1xjXFHK1Am6-CsIPUUjoEAqJRg9R0VKnzCI8ZpROUKz99AtV65adCGXb872sR2CNNhtSCG79r6c2By2Ie_K0O2JTYyuy-VLsLG3IdpNyOkSnXmzSq74vWO0eJh9TJ-q-evj83Qyr9YEq1wZQY1XyjQSMHbgFaNN7duaAVjrXQuCANRgiXBCusYJ4bB3kuF2oIwkdIyuD3_XJlmz8tF0NiS9juHbxJ3GoqaUUzlwNwcuDVW3dFE3ff-VNAa931H_25H-ACHEX9s</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Mureşan, Raul C.</creator><creator>Pipa, Gordon</creator><creator>Wheeler, Diek W.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Single-Unit Recordings Revisited: Activity in Recurrent Microcircuits</title><author>Mureşan, Raul C. ; Pipa, Gordon ; Wheeler, Diek W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-a73af99ab8011e0f943b6fd6400ccfed0720060c27e78ebe77e1fe841d6fda823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classical Analysis Method</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Experimental Neuroscience</topic><topic>Firing Rate</topic><topic>Multiunit Recording</topic><topic>Subthreshold Oscillation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mureşan, Raul C.</creatorcontrib><creatorcontrib>Pipa, Gordon</creatorcontrib><creatorcontrib>Wheeler, Diek W.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mureşan, Raul C.</au><au>Pipa, Gordon</au><au>Wheeler, Diek W.</au><au>Kacprzyk, Janusz</au><au>Oja, Erkki</au><au>Zadrożny, Sławomir</au><au>Duch, Włodzisław</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Single-Unit Recordings Revisited: Activity in Recurrent Microcircuits</atitle><btitle>Artificial Neural Networks: Biological Inspirations – ICANN 2005</btitle><date>2005</date><risdate>2005</risdate><spage>153</spage><epage>159</epage><pages>153-159</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540287523</isbn><isbn>9783540287520</isbn><eisbn>9783540287544</eisbn><eisbn>354028754X</eisbn><abstract>We investigated the relevance of single-unit recordings in the context of dynamical neural systems with recurrent synapses. The present study focuses on modeling a relatively small, biologically-plausible network of neurons. In the absence of any input, the network activity is self-sustained due to the resonating properties of the neurons. Recording of single units reveals an increasingly complex response to stimulation as one proceeds higher into the processing stream hierarchy. Results suggest that classical analysis methods, using rate and averaging over trials, fail to describe the dynamics of the system, and instead hide the relevant information embedded in the complex states of the network. We conclude that single-unit recordings, which are still extensively used in experimental neuroscience, need to be more carefully interpreted.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11550822_25</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Neural Networks: Biological Inspirations – ICANN 2005, 2005, p.153-159
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17633538
source Springer Books
subjects Applied sciences
Artificial intelligence
Classical Analysis Method
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Experimental Neuroscience
Firing Rate
Multiunit Recording
Subthreshold Oscillation
title Single-Unit Recordings Revisited: Activity in Recurrent Microcircuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Single-Unit%20Recordings%20Revisited:%20Activity%20in%20Recurrent%20Microcircuits&rft.btitle=Artificial%20Neural%20Networks:%20Biological%20Inspirations%20%E2%80%93%20ICANN%202005&rft.au=Mure%C5%9Fan,%20Raul%20C.&rft.date=2005&rft.spage=153&rft.epage=159&rft.pages=153-159&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540287523&rft.isbn_list=9783540287520&rft_id=info:doi/10.1007/11550822_25&rft_dat=%3Cpascalfrancis_sprin%3E17633538%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540287544&rft.eisbn_list=354028754X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true