Edge and line detection as exercises in hypothesis testing

In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Newsam, G.N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2688 Vol. 4
container_issue
container_start_page 2685
container_title
container_volume 4
creator Newsam, G.N.
description In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising general linear features as lines along which the distribution of pixel values and/or pixel differences is significantly different from their distribution in the image as a whole. Detection then becomes an exercise in testing the hypothesis that the two distributions are different. For Gaussian distributions the test reduces to computing one or more Radon transforms. Issues of length and scale are now addressed by multiresolution methods: multiresolution implementations of the Radon transform naturally construct longer lines as unions of shorter ones, while broader lines are detected by applying the detection process to the coefficients in each level of a wavelet decomposition of the image.
doi_str_mv 10.1109/ICIP.2004.1421657
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17612020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1421657</ieee_id><sourcerecordid>17612020</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-b69eb161b97f2e327f0b8cb1689ff46222e1b777ad98543bfa203c82d33f24053</originalsourceid><addsrcrecordid>eNpFUE1Lw0AUXPwA2-oPEC978Zj63tvd7MabhKqFgh70XDbJ23YlpiGbg_33Bip4GpgZhpkR4hZhiQjFw7pcvy8JQC9RE-bGnokZKYeZM7o4F3OwDpQzRqsLMUNDlGnn4ErMU_oCIECFM_G4anYsfdfINnYsGx65HuOhkz5J_uGhjomTjJ3cH_vDuOcUkxw5jbHbXYvL4NvEN3-4EJ_Pq4_yNdu8vazLp00WCcyYVXnBFeZYFTYQK7IBKldPjCtC0DkRMVbWWt8UU3FVBU-gakeNUoE0GLUQ96fc3qfat2Hw3dRq2w_x2w_HLdocaZoz-e5OvsjM__LpG_ULYNdUpQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Edge and line detection as exercises in hypothesis testing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Newsam, G.N.</creator><creatorcontrib>Newsam, G.N.</creatorcontrib><description>In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising general linear features as lines along which the distribution of pixel values and/or pixel differences is significantly different from their distribution in the image as a whole. Detection then becomes an exercise in testing the hypothesis that the two distributions are different. For Gaussian distributions the test reduces to computing one or more Radon transforms. Issues of length and scale are now addressed by multiresolution methods: multiresolution implementations of the Radon transform naturally construct longer lines as unions of shorter ones, while broader lines are detected by applying the detection process to the coefficients in each level of a wavelet decomposition of the image.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 0780385543</identifier><identifier>ISBN: 9780780385542</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2004.1421657</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Distributed computing ; Exact sciences and technology ; Filtering ; Gaussian distribution ; Image edge detection ; Image resolution ; Joining processes ; Matched filters ; Pattern recognition. Digital image processing. Computational geometry ; Pixel ; Testing ; Wavelet transforms</subject><ispartof>2004 International Conference on Image Processing, 2004. ICIP '04, 2004, Vol.4, p.2685-2688 Vol. 4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1421657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1421657$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17612020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Newsam, G.N.</creatorcontrib><title>Edge and line detection as exercises in hypothesis testing</title><title>2004 International Conference on Image Processing, 2004. ICIP '04</title><addtitle>ICIP</addtitle><description>In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising general linear features as lines along which the distribution of pixel values and/or pixel differences is significantly different from their distribution in the image as a whole. Detection then becomes an exercise in testing the hypothesis that the two distributions are different. For Gaussian distributions the test reduces to computing one or more Radon transforms. Issues of length and scale are now addressed by multiresolution methods: multiresolution implementations of the Radon transform naturally construct longer lines as unions of shorter ones, while broader lines are detected by applying the detection process to the coefficients in each level of a wavelet decomposition of the image.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Distributed computing</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Gaussian distribution</subject><subject>Image edge detection</subject><subject>Image resolution</subject><subject>Joining processes</subject><subject>Matched filters</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixel</subject><subject>Testing</subject><subject>Wavelet transforms</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>0780385543</isbn><isbn>9780780385542</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE1Lw0AUXPwA2-oPEC978Zj63tvd7MabhKqFgh70XDbJ23YlpiGbg_33Bip4GpgZhpkR4hZhiQjFw7pcvy8JQC9RE-bGnokZKYeZM7o4F3OwDpQzRqsLMUNDlGnn4ErMU_oCIECFM_G4anYsfdfINnYsGx65HuOhkz5J_uGhjomTjJ3cH_vDuOcUkxw5jbHbXYvL4NvEN3-4EJ_Pq4_yNdu8vazLp00WCcyYVXnBFeZYFTYQK7IBKldPjCtC0DkRMVbWWt8UU3FVBU-gakeNUoE0GLUQ96fc3qfat2Hw3dRq2w_x2w_HLdocaZoz-e5OvsjM__LpG_ULYNdUpQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Newsam, G.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Edge and line detection as exercises in hypothesis testing</title><author>Newsam, G.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-b69eb161b97f2e327f0b8cb1689ff46222e1b777ad98543bfa203c82d33f24053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Distributed computing</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Gaussian distribution</topic><topic>Image edge detection</topic><topic>Image resolution</topic><topic>Joining processes</topic><topic>Matched filters</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixel</topic><topic>Testing</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Newsam, G.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Newsam, G.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Edge and line detection as exercises in hypothesis testing</atitle><btitle>2004 International Conference on Image Processing, 2004. ICIP '04</btitle><stitle>ICIP</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>2685</spage><epage>2688 Vol. 4</epage><pages>2685-2688 Vol. 4</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>0780385543</isbn><isbn>9780780385542</isbn><abstract>In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising general linear features as lines along which the distribution of pixel values and/or pixel differences is significantly different from their distribution in the image as a whole. Detection then becomes an exercise in testing the hypothesis that the two distributions are different. For Gaussian distributions the test reduces to computing one or more Radon transforms. Issues of length and scale are now addressed by multiresolution methods: multiresolution implementations of the Radon transform naturally construct longer lines as unions of shorter ones, while broader lines are detected by applying the detection process to the coefficients in each level of a wavelet decomposition of the image.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ICIP.2004.1421657</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2004 International Conference on Image Processing, 2004. ICIP '04, 2004, Vol.4, p.2685-2688 Vol. 4
issn 1522-4880
2381-8549
language eng
recordid cdi_pascalfrancis_primary_17612020
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Distributed computing
Exact sciences and technology
Filtering
Gaussian distribution
Image edge detection
Image resolution
Joining processes
Matched filters
Pattern recognition. Digital image processing. Computational geometry
Pixel
Testing
Wavelet transforms
title Edge and line detection as exercises in hypothesis testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Edge%20and%20line%20detection%20as%20exercises%20in%20hypothesis%20testing&rft.btitle=2004%20International%20Conference%20on%20Image%20Processing,%202004.%20ICIP%20'04&rft.au=Newsam,%20G.N.&rft.date=2004&rft.volume=4&rft.spage=2685&rft.epage=2688%20Vol.%204&rft.pages=2685-2688%20Vol.%204&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=0780385543&rft.isbn_list=9780780385542&rft_id=info:doi/10.1109/ICIP.2004.1421657&rft_dat=%3Cpascalfrancis_6IE%3E17612020%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1421657&rfr_iscdi=true