Edge and line detection as exercises in hypothesis testing
In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising genera...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2688 Vol. 4 |
---|---|
container_issue | |
container_start_page | 2685 |
container_title | |
container_volume | 4 |
creator | Newsam, G.N. |
description | In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising general linear features as lines along which the distribution of pixel values and/or pixel differences is significantly different from their distribution in the image as a whole. Detection then becomes an exercise in testing the hypothesis that the two distributions are different. For Gaussian distributions the test reduces to computing one or more Radon transforms. Issues of length and scale are now addressed by multiresolution methods: multiresolution implementations of the Radon transform naturally construct longer lines as unions of shorter ones, while broader lines are detected by applying the detection process to the coefficients in each level of a wavelet decomposition of the image. |
doi_str_mv | 10.1109/ICIP.2004.1421657 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17612020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1421657</ieee_id><sourcerecordid>17612020</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-b69eb161b97f2e327f0b8cb1689ff46222e1b777ad98543bfa203c82d33f24053</originalsourceid><addsrcrecordid>eNpFUE1Lw0AUXPwA2-oPEC978Zj63tvd7MabhKqFgh70XDbJ23YlpiGbg_33Bip4GpgZhpkR4hZhiQjFw7pcvy8JQC9RE-bGnokZKYeZM7o4F3OwDpQzRqsLMUNDlGnn4ErMU_oCIECFM_G4anYsfdfINnYsGx65HuOhkz5J_uGhjomTjJ3cH_vDuOcUkxw5jbHbXYvL4NvEN3-4EJ_Pq4_yNdu8vazLp00WCcyYVXnBFeZYFTYQK7IBKldPjCtC0DkRMVbWWt8UU3FVBU-gakeNUoE0GLUQ96fc3qfat2Hw3dRq2w_x2w_HLdocaZoz-e5OvsjM__LpG_ULYNdUpQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Edge and line detection as exercises in hypothesis testing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Newsam, G.N.</creator><creatorcontrib>Newsam, G.N.</creatorcontrib><description>In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising general linear features as lines along which the distribution of pixel values and/or pixel differences is significantly different from their distribution in the image as a whole. Detection then becomes an exercise in testing the hypothesis that the two distributions are different. For Gaussian distributions the test reduces to computing one or more Radon transforms. Issues of length and scale are now addressed by multiresolution methods: multiresolution implementations of the Radon transform naturally construct longer lines as unions of shorter ones, while broader lines are detected by applying the detection process to the coefficients in each level of a wavelet decomposition of the image.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 0780385543</identifier><identifier>ISBN: 9780780385542</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2004.1421657</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Distributed computing ; Exact sciences and technology ; Filtering ; Gaussian distribution ; Image edge detection ; Image resolution ; Joining processes ; Matched filters ; Pattern recognition. Digital image processing. Computational geometry ; Pixel ; Testing ; Wavelet transforms</subject><ispartof>2004 International Conference on Image Processing, 2004. ICIP '04, 2004, Vol.4, p.2685-2688 Vol. 4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1421657$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1421657$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17612020$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Newsam, G.N.</creatorcontrib><title>Edge and line detection as exercises in hypothesis testing</title><title>2004 International Conference on Image Processing, 2004. ICIP '04</title><addtitle>ICIP</addtitle><description>In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising general linear features as lines along which the distribution of pixel values and/or pixel differences is significantly different from their distribution in the image as a whole. Detection then becomes an exercise in testing the hypothesis that the two distributions are different. For Gaussian distributions the test reduces to computing one or more Radon transforms. Issues of length and scale are now addressed by multiresolution methods: multiresolution implementations of the Radon transform naturally construct longer lines as unions of shorter ones, while broader lines are detected by applying the detection process to the coefficients in each level of a wavelet decomposition of the image.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Distributed computing</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Gaussian distribution</subject><subject>Image edge detection</subject><subject>Image resolution</subject><subject>Joining processes</subject><subject>Matched filters</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixel</subject><subject>Testing</subject><subject>Wavelet transforms</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>0780385543</isbn><isbn>9780780385542</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUE1Lw0AUXPwA2-oPEC978Zj63tvd7MabhKqFgh70XDbJ23YlpiGbg_33Bip4GpgZhpkR4hZhiQjFw7pcvy8JQC9RE-bGnokZKYeZM7o4F3OwDpQzRqsLMUNDlGnn4ErMU_oCIECFM_G4anYsfdfINnYsGx65HuOhkz5J_uGhjomTjJ3cH_vDuOcUkxw5jbHbXYvL4NvEN3-4EJ_Pq4_yNdu8vazLp00WCcyYVXnBFeZYFTYQK7IBKldPjCtC0DkRMVbWWt8UU3FVBU-gakeNUoE0GLUQ96fc3qfat2Hw3dRq2w_x2w_HLdocaZoz-e5OvsjM__LpG_ULYNdUpQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Newsam, G.N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Edge and line detection as exercises in hypothesis testing</title><author>Newsam, G.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-b69eb161b97f2e327f0b8cb1689ff46222e1b777ad98543bfa203c82d33f24053</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Distributed computing</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Gaussian distribution</topic><topic>Image edge detection</topic><topic>Image resolution</topic><topic>Joining processes</topic><topic>Matched filters</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixel</topic><topic>Testing</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Newsam, G.N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Newsam, G.N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Edge and line detection as exercises in hypothesis testing</atitle><btitle>2004 International Conference on Image Processing, 2004. ICIP '04</btitle><stitle>ICIP</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>2685</spage><epage>2688 Vol. 4</epage><pages>2685-2688 Vol. 4</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>0780385543</isbn><isbn>9780780385542</isbn><abstract>In the standard paradigm for edge or line detection matched filters are used to test for the presence of a specified structure. Longer lines are then produced by linking detections; broader lines by filtering at larger scales. The paper proposes an alternative approach based on characterising general linear features as lines along which the distribution of pixel values and/or pixel differences is significantly different from their distribution in the image as a whole. Detection then becomes an exercise in testing the hypothesis that the two distributions are different. For Gaussian distributions the test reduces to computing one or more Radon transforms. Issues of length and scale are now addressed by multiresolution methods: multiresolution implementations of the Radon transform naturally construct longer lines as unions of shorter ones, while broader lines are detected by applying the detection process to the coefficients in each level of a wavelet decomposition of the image.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ICIP.2004.1421657</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-4880 |
ispartof | 2004 International Conference on Image Processing, 2004. ICIP '04, 2004, Vol.4, p.2685-2688 Vol. 4 |
issn | 1522-4880 2381-8549 |
language | eng |
recordid | cdi_pascalfrancis_primary_17612020 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Distributed computing Exact sciences and technology Filtering Gaussian distribution Image edge detection Image resolution Joining processes Matched filters Pattern recognition. Digital image processing. Computational geometry Pixel Testing Wavelet transforms |
title | Edge and line detection as exercises in hypothesis testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Edge%20and%20line%20detection%20as%20exercises%20in%20hypothesis%20testing&rft.btitle=2004%20International%20Conference%20on%20Image%20Processing,%202004.%20ICIP%20'04&rft.au=Newsam,%20G.N.&rft.date=2004&rft.volume=4&rft.spage=2685&rft.epage=2688%20Vol.%204&rft.pages=2685-2688%20Vol.%204&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=0780385543&rft.isbn_list=9780780385542&rft_id=info:doi/10.1109/ICIP.2004.1421657&rft_dat=%3Cpascalfrancis_6IE%3E17612020%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1421657&rfr_iscdi=true |