Tracking deformable objects in geospatial applications

In this paper we describe a novel approach for change detection of moving deformable objects. We assume that each object is represented as a closed polygon (convex or concave). First, we use differential snakes to track the object outline between two different frames. Next, we examine the geometric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gyftakis, S., Agouris, P., Stefanidis, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2582 Vol. 4
container_issue
container_start_page 2579
container_title
container_volume 4
creator Gyftakis, S.
Agouris, P.
Stefanidis, A.
description In this paper we describe a novel approach for change detection of moving deformable objects. We assume that each object is represented as a closed polygon (convex or concave). First, we use differential snakes to track the object outline between two different frames. Next, we examine the geometric properties (area moments and principal axes) of these two polygons and we estimate their changes (translation, rotation, area expanded or contracted). Additionally, using results from invariant moments theory we compute a similarity index among different instances of an object's history. This information is used to update geospatial databases and to support complex analysis. Experimental results on real imagery illustrate the capabilities of our approach.
doi_str_mv 10.1109/ICIP.2004.1421630
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17611994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1421630</ieee_id><sourcerecordid>17611994</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-6aa3b69b1c56c7dc9ec6f68339d14f71cd5eef7c253bcda6e073c85962160a9c3</originalsourceid><addsrcrecordid>eNpFkDtrw0AQhI88ILaTHxDSqEkpZfdeuiuDycNgSAqnNqvVyZwjS0KnJv8-AgdSzcB8DMwIcY9QIIJ_2qw3n4UE0AVqiVbBhVhI5TB3RvtLsYTSgXLGaHUlFmikzLVzcCOWKR0BJKDChbC7kfg7doesDk0_nqhqQ9ZXx8BTymKXHUKfBpoitRkNQxt59n2XbsV1Q20Kd3-6El-vL7v1e779eNusn7d5lGCm3BKpyvoK2Vgua_aBbWOdUr5G3ZTItQmhKVkaVXFNNkCp2Blv5z1AntVKPJ57B0pMbTNSxzHthzGeaPzZY2kRvdcz93DmYgjhPz7_on4BmtdUng</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Tracking deformable objects in geospatial applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gyftakis, S. ; Agouris, P. ; Stefanidis, A.</creator><creatorcontrib>Gyftakis, S. ; Agouris, P. ; Stefanidis, A.</creatorcontrib><description>In this paper we describe a novel approach for change detection of moving deformable objects. We assume that each object is represented as a closed polygon (convex or concave). First, we use differential snakes to track the object outline between two different frames. Next, we examine the geometric properties (area moments and principal axes) of these two polygons and we estimate their changes (translation, rotation, area expanded or contracted). Additionally, using results from invariant moments theory we compute a similarity index among different instances of an object's history. This information is used to update geospatial databases and to support complex analysis. Experimental results on real imagery illustrate the capabilities of our approach.</description><identifier>ISSN: 1522-4880</identifier><identifier>ISBN: 0780385543</identifier><identifier>ISBN: 9780780385542</identifier><identifier>EISSN: 2381-8549</identifier><identifier>DOI: 10.1109/ICIP.2004.1421630</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Active contours ; Applied sciences ; Artificial intelligence ; Computational Intelligence Society ; Computer science; control theory; systems ; Deformable models ; Exact sciences and technology ; Information science ; Information systems ; Modems ; Monitoring ; Object detection ; Pattern recognition. Digital image processing. Computational geometry ; Shape</subject><ispartof>2004 International Conference on Image Processing, 2004. ICIP '04, 2004, Vol.4, p.2579-2582 Vol. 4</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1421630$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1421630$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17611994$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gyftakis, S.</creatorcontrib><creatorcontrib>Agouris, P.</creatorcontrib><creatorcontrib>Stefanidis, A.</creatorcontrib><title>Tracking deformable objects in geospatial applications</title><title>2004 International Conference on Image Processing, 2004. ICIP '04</title><addtitle>ICIP</addtitle><description>In this paper we describe a novel approach for change detection of moving deformable objects. We assume that each object is represented as a closed polygon (convex or concave). First, we use differential snakes to track the object outline between two different frames. Next, we examine the geometric properties (area moments and principal axes) of these two polygons and we estimate their changes (translation, rotation, area expanded or contracted). Additionally, using results from invariant moments theory we compute a similarity index among different instances of an object's history. This information is used to update geospatial databases and to support complex analysis. Experimental results on real imagery illustrate the capabilities of our approach.</description><subject>Active contours</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational Intelligence Society</subject><subject>Computer science; control theory; systems</subject><subject>Deformable models</subject><subject>Exact sciences and technology</subject><subject>Information science</subject><subject>Information systems</subject><subject>Modems</subject><subject>Monitoring</subject><subject>Object detection</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Shape</subject><issn>1522-4880</issn><issn>2381-8549</issn><isbn>0780385543</isbn><isbn>9780780385542</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkDtrw0AQhI88ILaTHxDSqEkpZfdeuiuDycNgSAqnNqvVyZwjS0KnJv8-AgdSzcB8DMwIcY9QIIJ_2qw3n4UE0AVqiVbBhVhI5TB3RvtLsYTSgXLGaHUlFmikzLVzcCOWKR0BJKDChbC7kfg7doesDk0_nqhqQ9ZXx8BTymKXHUKfBpoitRkNQxt59n2XbsV1Q20Kd3-6El-vL7v1e779eNusn7d5lGCm3BKpyvoK2Vgua_aBbWOdUr5G3ZTItQmhKVkaVXFNNkCp2Blv5z1AntVKPJ57B0pMbTNSxzHthzGeaPzZY2kRvdcz93DmYgjhPz7_on4BmtdUng</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Gyftakis, S.</creator><creator>Agouris, P.</creator><creator>Stefanidis, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Tracking deformable objects in geospatial applications</title><author>Gyftakis, S. ; Agouris, P. ; Stefanidis, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-6aa3b69b1c56c7dc9ec6f68339d14f71cd5eef7c253bcda6e073c85962160a9c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Active contours</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational Intelligence Society</topic><topic>Computer science; control theory; systems</topic><topic>Deformable models</topic><topic>Exact sciences and technology</topic><topic>Information science</topic><topic>Information systems</topic><topic>Modems</topic><topic>Monitoring</topic><topic>Object detection</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Shape</topic><toplevel>online_resources</toplevel><creatorcontrib>Gyftakis, S.</creatorcontrib><creatorcontrib>Agouris, P.</creatorcontrib><creatorcontrib>Stefanidis, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gyftakis, S.</au><au>Agouris, P.</au><au>Stefanidis, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Tracking deformable objects in geospatial applications</atitle><btitle>2004 International Conference on Image Processing, 2004. ICIP '04</btitle><stitle>ICIP</stitle><date>2004</date><risdate>2004</risdate><volume>4</volume><spage>2579</spage><epage>2582 Vol. 4</epage><pages>2579-2582 Vol. 4</pages><issn>1522-4880</issn><eissn>2381-8549</eissn><isbn>0780385543</isbn><isbn>9780780385542</isbn><abstract>In this paper we describe a novel approach for change detection of moving deformable objects. We assume that each object is represented as a closed polygon (convex or concave). First, we use differential snakes to track the object outline between two different frames. Next, we examine the geometric properties (area moments and principal axes) of these two polygons and we estimate their changes (translation, rotation, area expanded or contracted). Additionally, using results from invariant moments theory we compute a similarity index among different instances of an object's history. This information is used to update geospatial databases and to support complex analysis. Experimental results on real imagery illustrate the capabilities of our approach.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ICIP.2004.1421630</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-4880
ispartof 2004 International Conference on Image Processing, 2004. ICIP '04, 2004, Vol.4, p.2579-2582 Vol. 4
issn 1522-4880
2381-8549
language eng
recordid cdi_pascalfrancis_primary_17611994
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active contours
Applied sciences
Artificial intelligence
Computational Intelligence Society
Computer science
control theory
systems
Deformable models
Exact sciences and technology
Information science
Information systems
Modems
Monitoring
Object detection
Pattern recognition. Digital image processing. Computational geometry
Shape
title Tracking deformable objects in geospatial applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Tracking%20deformable%20objects%20in%20geospatial%20applications&rft.btitle=2004%20International%20Conference%20on%20Image%20Processing,%202004.%20ICIP%20'04&rft.au=Gyftakis,%20S.&rft.date=2004&rft.volume=4&rft.spage=2579&rft.epage=2582%20Vol.%204&rft.pages=2579-2582%20Vol.%204&rft.issn=1522-4880&rft.eissn=2381-8549&rft.isbn=0780385543&rft.isbn_list=9780780385542&rft_id=info:doi/10.1109/ICIP.2004.1421630&rft_dat=%3Cpascalfrancis_6IE%3E17611994%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1421630&rfr_iscdi=true