Network routing capacity

We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2006-03, Vol.52 (3), p.777-788
Hauptverfasser: Cannons, J., Dougherty, R., Freiling, C., Zeger, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue 3
container_start_page 777
container_title IEEE transactions on information theory
container_volume 52
creator Cannons, J.
Dougherty, R.
Freiling, C.
Zeger, K.
description We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in (0, 1] is the routing capacity of some solvable network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used
doi_str_mv 10.1109/TIT.2005.864474
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17600873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1603753</ieee_id><sourcerecordid>28070485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-a5d37f546c8c0847d41a8bd97fe003482e01852b37b2ea1d4df0ae93ee450173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKtnBS9FUE_bTjbJJjlK8aNQ9LL3kGZnZet2tya7SP-9KVsoePA0DPPMO8xDyDWFKaWgZ_kin6YAYqoyziU_ISMqhEx0JvgpGQFQlWjO1Tm5CGEdWy5oOiI379j9tP5r4tu-q5rPibNb66pud0nOSlsHvDrUMclfnvP5W7L8eF3Mn5aJiwFdYkXBZCl45pQDxWXBqVWrQssSARhXKcbDIl0xuUrR0oIXJVjUDJELoJKNyeMQu_Xtd4-hM5sqOKxr22DbB6OUZkoCyyL58C-ZKpDAlYjg3R9w3fa-iU8YqoWmLJU0QrMBcr4NwWNptr7aWL8zFMzep4k-zd6nGXzGjftDrA3O1qW3javCcU1mAEqyyN0OXIWIx3EGTArGfgEL1nrv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195913271</pqid></control><display><type>article</type><title>Network routing capacity</title><source>IEEE Electronic Library (IEL)</source><creator>Cannons, J. ; Dougherty, R. ; Freiling, C. ; Zeger, K.</creator><creatorcontrib>Cannons, J. ; Dougherty, R. ; Freiling, C. ; Zeger, K.</creatorcontrib><description>We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in (0, 1] is the routing capacity of some solvable network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2005.864474</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Capacity ; Coding ; Coding, codes ; Communication networks ; Communication switching ; Computer networks ; Exact sciences and technology ; flow ; Galois fields ; Information technology ; Information theory ; Information, signal and communications theory ; Instruction sets ; Linearity ; Mathematical models ; Messages ; Network coding ; Networks ; Routing ; Routing (telecommunications) ; Signal and communications theory ; switching ; Telecommunications and information theory ; Throughput ; Vectors</subject><ispartof>IEEE transactions on information theory, 2006-03, Vol.52 (3), p.777-788</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-a5d37f546c8c0847d41a8bd97fe003482e01852b37b2ea1d4df0ae93ee450173</citedby><cites>FETCH-LOGICAL-c451t-a5d37f546c8c0847d41a8bd97fe003482e01852b37b2ea1d4df0ae93ee450173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1603753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1603753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17600873$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cannons, J.</creatorcontrib><creatorcontrib>Dougherty, R.</creatorcontrib><creatorcontrib>Freiling, C.</creatorcontrib><creatorcontrib>Zeger, K.</creatorcontrib><title>Network routing capacity</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in (0, 1] is the routing capacity of some solvable network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Capacity</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Communication networks</subject><subject>Communication switching</subject><subject>Computer networks</subject><subject>Exact sciences and technology</subject><subject>flow</subject><subject>Galois fields</subject><subject>Information technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Instruction sets</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Messages</subject><subject>Network coding</subject><subject>Networks</subject><subject>Routing</subject><subject>Routing (telecommunications)</subject><subject>Signal and communications theory</subject><subject>switching</subject><subject>Telecommunications and information theory</subject><subject>Throughput</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKtnBS9FUE_bTjbJJjlK8aNQ9LL3kGZnZet2tya7SP-9KVsoePA0DPPMO8xDyDWFKaWgZ_kin6YAYqoyziU_ISMqhEx0JvgpGQFQlWjO1Tm5CGEdWy5oOiI379j9tP5r4tu-q5rPibNb66pud0nOSlsHvDrUMclfnvP5W7L8eF3Mn5aJiwFdYkXBZCl45pQDxWXBqVWrQssSARhXKcbDIl0xuUrR0oIXJVjUDJELoJKNyeMQu_Xtd4-hM5sqOKxr22DbB6OUZkoCyyL58C-ZKpDAlYjg3R9w3fa-iU8YqoWmLJU0QrMBcr4NwWNptr7aWL8zFMzep4k-zd6nGXzGjftDrA3O1qW3javCcU1mAEqyyN0OXIWIx3EGTArGfgEL1nrv</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Cannons, J.</creator><creator>Dougherty, R.</creator><creator>Freiling, C.</creator><creator>Zeger, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060301</creationdate><title>Network routing capacity</title><author>Cannons, J. ; Dougherty, R. ; Freiling, C. ; Zeger, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-a5d37f546c8c0847d41a8bd97fe003482e01852b37b2ea1d4df0ae93ee450173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Capacity</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Communication networks</topic><topic>Communication switching</topic><topic>Computer networks</topic><topic>Exact sciences and technology</topic><topic>flow</topic><topic>Galois fields</topic><topic>Information technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Instruction sets</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Messages</topic><topic>Network coding</topic><topic>Networks</topic><topic>Routing</topic><topic>Routing (telecommunications)</topic><topic>Signal and communications theory</topic><topic>switching</topic><topic>Telecommunications and information theory</topic><topic>Throughput</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cannons, J.</creatorcontrib><creatorcontrib>Dougherty, R.</creatorcontrib><creatorcontrib>Freiling, C.</creatorcontrib><creatorcontrib>Zeger, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cannons, J.</au><au>Dougherty, R.</au><au>Freiling, C.</au><au>Zeger, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network routing capacity</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2006-03-01</date><risdate>2006</risdate><volume>52</volume><issue>3</issue><spage>777</spage><epage>788</epage><pages>777-788</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in (0, 1] is the routing capacity of some solvable network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2005.864474</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2006-03, Vol.52 (3), p.777-788
issn 0018-9448
1557-9654
language eng
recordid cdi_pascalfrancis_primary_17600873
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Capacity
Coding
Coding, codes
Communication networks
Communication switching
Computer networks
Exact sciences and technology
flow
Galois fields
Information technology
Information theory
Information, signal and communications theory
Instruction sets
Linearity
Mathematical models
Messages
Network coding
Networks
Routing
Routing (telecommunications)
Signal and communications theory
switching
Telecommunications and information theory
Throughput
Vectors
title Network routing capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20routing%20capacity&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Cannons,%20J.&rft.date=2006-03-01&rft.volume=52&rft.issue=3&rft.spage=777&rft.epage=788&rft.pages=777-788&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2005.864474&rft_dat=%3Cproquest_RIE%3E28070485%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195913271&rft_id=info:pmid/&rft_ieee_id=1603753&rfr_iscdi=true