Network routing capacity
We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2006-03, Vol.52 (3), p.777-788 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 788 |
---|---|
container_issue | 3 |
container_start_page | 777 |
container_title | IEEE transactions on information theory |
container_volume | 52 |
creator | Cannons, J. Dougherty, R. Freiling, C. Zeger, K. |
description | We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in (0, 1] is the routing capacity of some solvable network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used |
doi_str_mv | 10.1109/TIT.2005.864474 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17600873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1603753</ieee_id><sourcerecordid>28070485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-a5d37f546c8c0847d41a8bd97fe003482e01852b37b2ea1d4df0ae93ee450173</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKtnBS9FUE_bTjbJJjlK8aNQ9LL3kGZnZet2tya7SP-9KVsoePA0DPPMO8xDyDWFKaWgZ_kin6YAYqoyziU_ISMqhEx0JvgpGQFQlWjO1Tm5CGEdWy5oOiI379j9tP5r4tu-q5rPibNb66pud0nOSlsHvDrUMclfnvP5W7L8eF3Mn5aJiwFdYkXBZCl45pQDxWXBqVWrQssSARhXKcbDIl0xuUrR0oIXJVjUDJELoJKNyeMQu_Xtd4-hM5sqOKxr22DbB6OUZkoCyyL58C-ZKpDAlYjg3R9w3fa-iU8YqoWmLJU0QrMBcr4NwWNptr7aWL8zFMzep4k-zd6nGXzGjftDrA3O1qW3javCcU1mAEqyyN0OXIWIx3EGTArGfgEL1nrv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195913271</pqid></control><display><type>article</type><title>Network routing capacity</title><source>IEEE Electronic Library (IEL)</source><creator>Cannons, J. ; Dougherty, R. ; Freiling, C. ; Zeger, K.</creator><creatorcontrib>Cannons, J. ; Dougherty, R. ; Freiling, C. ; Zeger, K.</creatorcontrib><description>We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in (0, 1] is the routing capacity of some solvable network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2005.864474</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Capacity ; Coding ; Coding, codes ; Communication networks ; Communication switching ; Computer networks ; Exact sciences and technology ; flow ; Galois fields ; Information technology ; Information theory ; Information, signal and communications theory ; Instruction sets ; Linearity ; Mathematical models ; Messages ; Network coding ; Networks ; Routing ; Routing (telecommunications) ; Signal and communications theory ; switching ; Telecommunications and information theory ; Throughput ; Vectors</subject><ispartof>IEEE transactions on information theory, 2006-03, Vol.52 (3), p.777-788</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-a5d37f546c8c0847d41a8bd97fe003482e01852b37b2ea1d4df0ae93ee450173</citedby><cites>FETCH-LOGICAL-c451t-a5d37f546c8c0847d41a8bd97fe003482e01852b37b2ea1d4df0ae93ee450173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1603753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1603753$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17600873$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cannons, J.</creatorcontrib><creatorcontrib>Dougherty, R.</creatorcontrib><creatorcontrib>Freiling, C.</creatorcontrib><creatorcontrib>Zeger, K.</creatorcontrib><title>Network routing capacity</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in (0, 1] is the routing capacity of some solvable network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Capacity</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Communication networks</subject><subject>Communication switching</subject><subject>Computer networks</subject><subject>Exact sciences and technology</subject><subject>flow</subject><subject>Galois fields</subject><subject>Information technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Instruction sets</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Messages</subject><subject>Network coding</subject><subject>Networks</subject><subject>Routing</subject><subject>Routing (telecommunications)</subject><subject>Signal and communications theory</subject><subject>switching</subject><subject>Telecommunications and information theory</subject><subject>Throughput</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kE1LAzEQhoMoWKtnBS9FUE_bTjbJJjlK8aNQ9LL3kGZnZet2tya7SP-9KVsoePA0DPPMO8xDyDWFKaWgZ_kin6YAYqoyziU_ISMqhEx0JvgpGQFQlWjO1Tm5CGEdWy5oOiI379j9tP5r4tu-q5rPibNb66pud0nOSlsHvDrUMclfnvP5W7L8eF3Mn5aJiwFdYkXBZCl45pQDxWXBqVWrQssSARhXKcbDIl0xuUrR0oIXJVjUDJELoJKNyeMQu_Xtd4-hM5sqOKxr22DbB6OUZkoCyyL58C-ZKpDAlYjg3R9w3fa-iU8YqoWmLJU0QrMBcr4NwWNptr7aWL8zFMzep4k-zd6nGXzGjftDrA3O1qW3javCcU1mAEqyyN0OXIWIx3EGTArGfgEL1nrv</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Cannons, J.</creator><creator>Dougherty, R.</creator><creator>Freiling, C.</creator><creator>Zeger, K.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060301</creationdate><title>Network routing capacity</title><author>Cannons, J. ; Dougherty, R. ; Freiling, C. ; Zeger, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-a5d37f546c8c0847d41a8bd97fe003482e01852b37b2ea1d4df0ae93ee450173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Capacity</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Communication networks</topic><topic>Communication switching</topic><topic>Computer networks</topic><topic>Exact sciences and technology</topic><topic>flow</topic><topic>Galois fields</topic><topic>Information technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Instruction sets</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Messages</topic><topic>Network coding</topic><topic>Networks</topic><topic>Routing</topic><topic>Routing (telecommunications)</topic><topic>Signal and communications theory</topic><topic>switching</topic><topic>Telecommunications and information theory</topic><topic>Throughput</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cannons, J.</creatorcontrib><creatorcontrib>Dougherty, R.</creatorcontrib><creatorcontrib>Freiling, C.</creatorcontrib><creatorcontrib>Zeger, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cannons, J.</au><au>Dougherty, R.</au><au>Freiling, C.</au><au>Zeger, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network routing capacity</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2006-03-01</date><risdate>2006</risdate><volume>52</volume><issue>3</issue><spage>777</spage><epage>788</epage><pages>777-788</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every rational number in (0, 1] is the routing capacity of some solvable network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2005.864474</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2006-03, Vol.52 (3), p.777-788 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_pascalfrancis_primary_17600873 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Capacity Coding Coding, codes Communication networks Communication switching Computer networks Exact sciences and technology flow Galois fields Information technology Information theory Information, signal and communications theory Instruction sets Linearity Mathematical models Messages Network coding Networks Routing Routing (telecommunications) Signal and communications theory switching Telecommunications and information theory Throughput Vectors |
title | Network routing capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20routing%20capacity&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Cannons,%20J.&rft.date=2006-03-01&rft.volume=52&rft.issue=3&rft.spage=777&rft.epage=788&rft.pages=777-788&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2005.864474&rft_dat=%3Cproquest_RIE%3E28070485%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195913271&rft_id=info:pmid/&rft_ieee_id=1603753&rfr_iscdi=true |