Process monitoring in principal component subspace: part 1 - fault reconstruction study

The principal component analysis (PCA) is a kind of data-driven modeling method that has wide applications in the field of industrial process monitoring and product quality control. However, it was shown that some faults can only be detected in the principal component subspace (PCS) and the T/sup 2/...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haiqing Wang, Ning Jiang, Diancai Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5124 vol.6
container_issue
container_start_page 5119
container_title
container_volume 6
creator Haiqing Wang
Ning Jiang
Diancai Yang
description The principal component analysis (PCA) is a kind of data-driven modeling method that has wide applications in the field of industrial process monitoring and product quality control. However, it was shown that some faults can only be detected in the principal component subspace (PCS) and the T/sup 2/ statistic in PCS is more robust than SPE statistic while the latter is in the residual subspace (RS). A reconstruction approach for these faults in the PCS is proposed to estimate the fault magnitude and then judge its type. The reconstructability conditions both for complete and partial ones are derived mathematically and the obtained results are illustrated and verified by simulation studies on a double-effective evaporator.
doi_str_mv 10.1109/ICSMC.2004.1401006
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17524257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1401006</ieee_id><sourcerecordid>17524257</sourcerecordid><originalsourceid>FETCH-LOGICAL-i205t-d60320b33253a73b94745d47137fb7cf4f06368057ceddc29ea5eefd605015d93</originalsourceid><addsrcrecordid>eNpFUEtLxDAYDD7A3dU_oJdcPHb98m69SfGxsKKgorclTROJdNOSpIf99xYqeJqBeTAMQpcE1oRAdbOp357rNQXga8KBAMgjtKBCqYJIIY7RElQJrBRSqhO0ICBpUVH6dYaWKf0AUOCkXKDP19gbmxLe98HnPvrwjX3Aw0SMH3SHTb8f-mBDxmls0qCNvcWDjhkTXGCnxy7jaE0fUo6jyb4POOWxPZyjU6e7ZC_-cIU-Hu7f66di-_K4qe-2hacgctFKYBQaxqhgWrGm4oqLlivClGuUcdyBZLIEoYxtW0Mrq4W1booJIKKt2Apdz72DTkZ3Luppd9pN-_c6HnZECcqnUybf1ezz1tp_eT6O_QJB1GBC</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Process monitoring in principal component subspace: part 1 - fault reconstruction study</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Haiqing Wang ; Ning Jiang ; Diancai Yang</creator><creatorcontrib>Haiqing Wang ; Ning Jiang ; Diancai Yang</creatorcontrib><description>The principal component analysis (PCA) is a kind of data-driven modeling method that has wide applications in the field of industrial process monitoring and product quality control. However, it was shown that some faults can only be detected in the principal component subspace (PCS) and the T/sup 2/ statistic in PCS is more robust than SPE statistic while the latter is in the residual subspace (RS). A reconstruction approach for these faults in the PCS is proposed to estimate the fault magnitude and then judge its type. The reconstructability conditions both for complete and partial ones are derived mathematically and the obtained results are illustrated and verified by simulation studies on a double-effective evaporator.</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780385667</identifier><identifier>ISBN: 9780780385665</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2004.1401006</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Chemical analysis ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Fault detection ; Fault diagnosis ; Industrial control ; Monitoring ; Personal communication networks ; Principal component analysis ; Process control ; Quality control ; Testing</subject><ispartof>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004, Vol.6, p.5119-5124 vol.6</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1401006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,4036,4037,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1401006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17524257$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Haiqing Wang</creatorcontrib><creatorcontrib>Ning Jiang</creatorcontrib><creatorcontrib>Diancai Yang</creatorcontrib><title>Process monitoring in principal component subspace: part 1 - fault reconstruction study</title><title>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)</title><addtitle>ICSMC</addtitle><description>The principal component analysis (PCA) is a kind of data-driven modeling method that has wide applications in the field of industrial process monitoring and product quality control. However, it was shown that some faults can only be detected in the principal component subspace (PCS) and the T/sup 2/ statistic in PCS is more robust than SPE statistic while the latter is in the residual subspace (RS). A reconstruction approach for these faults in the PCS is proposed to estimate the fault magnitude and then judge its type. The reconstructability conditions both for complete and partial ones are derived mathematically and the obtained results are illustrated and verified by simulation studies on a double-effective evaporator.</description><subject>Applied sciences</subject><subject>Chemical analysis</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Industrial control</subject><subject>Monitoring</subject><subject>Personal communication networks</subject><subject>Principal component analysis</subject><subject>Process control</subject><subject>Quality control</subject><subject>Testing</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780385667</isbn><isbn>9780780385665</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUEtLxDAYDD7A3dU_oJdcPHb98m69SfGxsKKgorclTROJdNOSpIf99xYqeJqBeTAMQpcE1oRAdbOp357rNQXga8KBAMgjtKBCqYJIIY7RElQJrBRSqhO0ICBpUVH6dYaWKf0AUOCkXKDP19gbmxLe98HnPvrwjX3Aw0SMH3SHTb8f-mBDxmls0qCNvcWDjhkTXGCnxy7jaE0fUo6jyb4POOWxPZyjU6e7ZC_-cIU-Hu7f66di-_K4qe-2hacgctFKYBQaxqhgWrGm4oqLlivClGuUcdyBZLIEoYxtW0Mrq4W1booJIKKt2Apdz72DTkZ3Luppd9pN-_c6HnZECcqnUybf1ezz1tp_eT6O_QJB1GBC</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Haiqing Wang</creator><creator>Ning Jiang</creator><creator>Diancai Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Process monitoring in principal component subspace: part 1 - fault reconstruction study</title><author>Haiqing Wang ; Ning Jiang ; Diancai Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i205t-d60320b33253a73b94745d47137fb7cf4f06368057ceddc29ea5eefd605015d93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Chemical analysis</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Industrial control</topic><topic>Monitoring</topic><topic>Personal communication networks</topic><topic>Principal component analysis</topic><topic>Process control</topic><topic>Quality control</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Haiqing Wang</creatorcontrib><creatorcontrib>Ning Jiang</creatorcontrib><creatorcontrib>Diancai Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEL</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haiqing Wang</au><au>Ning Jiang</au><au>Diancai Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Process monitoring in principal component subspace: part 1 - fault reconstruction study</atitle><btitle>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)</btitle><stitle>ICSMC</stitle><date>2004</date><risdate>2004</risdate><volume>6</volume><spage>5119</spage><epage>5124 vol.6</epage><pages>5119-5124 vol.6</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780385667</isbn><isbn>9780780385665</isbn><abstract>The principal component analysis (PCA) is a kind of data-driven modeling method that has wide applications in the field of industrial process monitoring and product quality control. However, it was shown that some faults can only be detected in the principal component subspace (PCS) and the T/sup 2/ statistic in PCS is more robust than SPE statistic while the latter is in the residual subspace (RS). A reconstruction approach for these faults in the PCS is proposed to estimate the fault magnitude and then judge its type. The reconstructability conditions both for complete and partial ones are derived mathematically and the obtained results are illustrated and verified by simulation studies on a double-effective evaporator.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ICSMC.2004.1401006</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004, Vol.6, p.5119-5124 vol.6
issn 1062-922X
2577-1655
language eng
recordid cdi_pascalfrancis_primary_17524257
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Chemical analysis
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Fault detection
Fault diagnosis
Industrial control
Monitoring
Personal communication networks
Principal component analysis
Process control
Quality control
Testing
title Process monitoring in principal component subspace: part 1 - fault reconstruction study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Process%20monitoring%20in%20principal%20component%20subspace:%20part%201%20-%20fault%20reconstruction%20study&rft.btitle=2004%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics%20(IEEE%20Cat.%20No.04CH37583)&rft.au=Haiqing%20Wang&rft.date=2004&rft.volume=6&rft.spage=5119&rft.epage=5124%20vol.6&rft.pages=5119-5124%20vol.6&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780385667&rft.isbn_list=9780780385665&rft_id=info:doi/10.1109/ICSMC.2004.1401006&rft_dat=%3Cpascalfrancis_6IE%3E17524257%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1401006&rfr_iscdi=true