Individualization of music similarity perception via feature subset selection

We address the problem of modeling the subjective perception of similarity between two music files that have been extracted from a music database with use of objective features. We propose the importation of user models in content-based music retrieval systems, which embody the ability of evolving a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lampropoulos, A.S., Sotiropoulos, D.N., Tsihrintzis, G.A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556 vol.1
container_issue
container_start_page 552
container_title
container_volume 1
creator Lampropoulos, A.S.
Sotiropoulos, D.N.
Tsihrintzis, G.A.
description We address the problem of modeling the subjective perception of similarity between two music files that have been extracted from a music database with use of objective features. We propose the importation of user models in content-based music retrieval systems, which embody the ability of evolving and using different music similarity measures for different users. Specifically, a user-supplied relevance feedback procedure allows the system to determine which subset of a set of objective features approximates more efficiently the subjective music similarity of a specific user. Our implementation of the proposed system verifies our hypothesis and exhibits significant improvement in perceived music similarity
doi_str_mv 10.1109/ICSMC.2004.1398357
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17523489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1398357</ieee_id><sourcerecordid>17523489</sourcerecordid><originalsourceid>FETCH-LOGICAL-i271t-efc9f1811835f218509c7718fb34447db61e0d85f6ea77762646cb19c334a3d83</originalsourceid><addsrcrecordid>eNpFkEtLAzEUhYMPsK3-Ad1k43LG3LyzlMFHocWFCu5KJnMDkWk7TGYK9ddbreDqLL6Pw-EQcg2sBGDubl69LquSMyZLEM4KZU7IhCtjCtBKnZIpM5YJq7Q2Z2QCTPPCcf5xQaY5fzLGmQQ7Icv5pkm71Iy-TV9-SNsN3Ua6HnMKNKd1an2fhj3tsA_Y_eJd8jSiH8YeaR7rjAPN2GL4gZfkPPo249Vfzsj748Nb9VwsXp7m1f2iSNzAUGAMLoIFOKyOHKxiLhgDNtZCSmmaWgOyxqqo0RtjNNdShxpcEEJ60VgxI7fH3s7n4NvY-01IedX1ae37_QqM4kJad_Bujl5CxH98vEt8A6w5XUE</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Individualization of music similarity perception via feature subset selection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lampropoulos, A.S. ; Sotiropoulos, D.N. ; Tsihrintzis, G.A.</creator><creatorcontrib>Lampropoulos, A.S. ; Sotiropoulos, D.N. ; Tsihrintzis, G.A.</creatorcontrib><description>We address the problem of modeling the subjective perception of similarity between two music files that have been extracted from a music database with use of objective features. We propose the importation of user models in content-based music retrieval systems, which embody the ability of evolving and using different music similarity measures for different users. Specifically, a user-supplied relevance feedback procedure allows the system to determine which subset of a set of objective features approximates more efficiently the subjective music similarity of a specific user. Our implementation of the proposed system verifies our hypothesis and exhibits significant improvement in perceived music similarity</description><identifier>ISSN: 1062-922X</identifier><identifier>ISBN: 0780385667</identifier><identifier>ISBN: 9780780385665</identifier><identifier>EISSN: 2577-1655</identifier><identifier>DOI: 10.1109/ICSMC.2004.1398357</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Audio databases ; Computer science; control theory; systems ; Content based retrieval ; Control theory. Systems ; Data mining ; Exact sciences and technology ; Feature extraction ; Feedback ; Image retrieval ; Informatics ; Multiple signal classification ; Music information retrieval ; Spatial databases</subject><ispartof>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004, Vol.1, p.552-556 vol.1</ispartof><rights>2006 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1398357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1398357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17523489$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lampropoulos, A.S.</creatorcontrib><creatorcontrib>Sotiropoulos, D.N.</creatorcontrib><creatorcontrib>Tsihrintzis, G.A.</creatorcontrib><title>Individualization of music similarity perception via feature subset selection</title><title>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)</title><addtitle>ICSMC</addtitle><description>We address the problem of modeling the subjective perception of similarity between two music files that have been extracted from a music database with use of objective features. We propose the importation of user models in content-based music retrieval systems, which embody the ability of evolving and using different music similarity measures for different users. Specifically, a user-supplied relevance feedback procedure allows the system to determine which subset of a set of objective features approximates more efficiently the subjective music similarity of a specific user. Our implementation of the proposed system verifies our hypothesis and exhibits significant improvement in perceived music similarity</description><subject>Applied sciences</subject><subject>Audio databases</subject><subject>Computer science; control theory; systems</subject><subject>Content based retrieval</subject><subject>Control theory. Systems</subject><subject>Data mining</subject><subject>Exact sciences and technology</subject><subject>Feature extraction</subject><subject>Feedback</subject><subject>Image retrieval</subject><subject>Informatics</subject><subject>Multiple signal classification</subject><subject>Music information retrieval</subject><subject>Spatial databases</subject><issn>1062-922X</issn><issn>2577-1655</issn><isbn>0780385667</isbn><isbn>9780780385665</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLAzEUhYMPsK3-Ad1k43LG3LyzlMFHocWFCu5KJnMDkWk7TGYK9ddbreDqLL6Pw-EQcg2sBGDubl69LquSMyZLEM4KZU7IhCtjCtBKnZIpM5YJq7Q2Z2QCTPPCcf5xQaY5fzLGmQQ7Icv5pkm71Iy-TV9-SNsN3Ua6HnMKNKd1an2fhj3tsA_Y_eJd8jSiH8YeaR7rjAPN2GL4gZfkPPo249Vfzsj748Nb9VwsXp7m1f2iSNzAUGAMLoIFOKyOHKxiLhgDNtZCSmmaWgOyxqqo0RtjNNdShxpcEEJ60VgxI7fH3s7n4NvY-01IedX1ae37_QqM4kJad_Bujl5CxH98vEt8A6w5XUE</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Lampropoulos, A.S.</creator><creator>Sotiropoulos, D.N.</creator><creator>Tsihrintzis, G.A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Individualization of music similarity perception via feature subset selection</title><author>Lampropoulos, A.S. ; Sotiropoulos, D.N. ; Tsihrintzis, G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i271t-efc9f1811835f218509c7718fb34447db61e0d85f6ea77762646cb19c334a3d83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Audio databases</topic><topic>Computer science; control theory; systems</topic><topic>Content based retrieval</topic><topic>Control theory. Systems</topic><topic>Data mining</topic><topic>Exact sciences and technology</topic><topic>Feature extraction</topic><topic>Feedback</topic><topic>Image retrieval</topic><topic>Informatics</topic><topic>Multiple signal classification</topic><topic>Music information retrieval</topic><topic>Spatial databases</topic><toplevel>online_resources</toplevel><creatorcontrib>Lampropoulos, A.S.</creatorcontrib><creatorcontrib>Sotiropoulos, D.N.</creatorcontrib><creatorcontrib>Tsihrintzis, G.A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lampropoulos, A.S.</au><au>Sotiropoulos, D.N.</au><au>Tsihrintzis, G.A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Individualization of music similarity perception via feature subset selection</atitle><btitle>2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583)</btitle><stitle>ICSMC</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>552</spage><epage>556 vol.1</epage><pages>552-556 vol.1</pages><issn>1062-922X</issn><eissn>2577-1655</eissn><isbn>0780385667</isbn><isbn>9780780385665</isbn><abstract>We address the problem of modeling the subjective perception of similarity between two music files that have been extracted from a music database with use of objective features. We propose the importation of user models in content-based music retrieval systems, which embody the ability of evolving and using different music similarity measures for different users. Specifically, a user-supplied relevance feedback procedure allows the system to determine which subset of a set of objective features approximates more efficiently the subjective music similarity of a specific user. Our implementation of the proposed system verifies our hypothesis and exhibits significant improvement in perceived music similarity</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/ICSMC.2004.1398357</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1062-922X
ispartof 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 2004, Vol.1, p.552-556 vol.1
issn 1062-922X
2577-1655
language eng
recordid cdi_pascalfrancis_primary_17523489
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Audio databases
Computer science
control theory
systems
Content based retrieval
Control theory. Systems
Data mining
Exact sciences and technology
Feature extraction
Feedback
Image retrieval
Informatics
Multiple signal classification
Music information retrieval
Spatial databases
title Individualization of music similarity perception via feature subset selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Individualization%20of%20music%20similarity%20perception%20via%20feature%20subset%20selection&rft.btitle=2004%20IEEE%20International%20Conference%20on%20Systems,%20Man%20and%20Cybernetics%20(IEEE%20Cat.%20No.04CH37583)&rft.au=Lampropoulos,%20A.S.&rft.date=2004&rft.volume=1&rft.spage=552&rft.epage=556%20vol.1&rft.pages=552-556%20vol.1&rft.issn=1062-922X&rft.eissn=2577-1655&rft.isbn=0780385667&rft.isbn_list=9780780385665&rft_id=info:doi/10.1109/ICSMC.2004.1398357&rft_dat=%3Cpascalfrancis_6IE%3E17523489%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1398357&rfr_iscdi=true