Efficient methods of non-myopic sensor management for multitarget tracking

This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kreucher, C., Hero, A.O., Kastella, K., Chang, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 727 Vol.1
container_issue
container_start_page 722
container_title
container_volume 1
creator Kreucher, C.
Hero, A.O.
Kastella, K.
Chang, D.
description This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering methods. The myopic sensor management scheme is based on maximizing the expected Renyi divergence between the JMPD and the JMPD after a new measurement is made. Since a full non-myopic solution is computationally intractable when looking more than a small number of time steps ahead, two approximate strategies are investigated. First, we develop an information-directed search which focuses Monte Carlo evaluations on action sequences that are most informative. Second, we give an approximate method of solving Bellman's equation which replaces the value-to-go with an easily computed function that approximates the long term value of the action. The performance of these methods is compared in terms of tracking performance and computational requirements.
doi_str_mv 10.1109/CDC.2004.1428735
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17498109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1428735</ieee_id><sourcerecordid>17498109</sourcerecordid><originalsourceid>FETCH-LOGICAL-i247t-29f8a38f96ad6acbbb20799dc9d44bc480515b5864d9ab5f929e67f2f003e9703</originalsourceid><addsrcrecordid>eNpFkM1LAzEUxAMqWGvvgpe9eNz6ks0meUdZWz8oeNFzeZtNarSbLZt46H9vSwVhYBjmxxyGsRsOc84B75vHZi4A5JxLYXRVn7EZagMHVUYZIc7ZBDjyUgiuLtlVSl8AYECpCXtdeB9scDEXvcufQ5eKwRdxiGW_H3bBFsnFNIxFT5E2rj9y_hh_tjlkGjcuF3kk-x3i5ppdeNomN_vzKftYLt6b53L19vTSPKzKIKTOpUBvqDIeFXWKbNu2AjRiZ7GTsrXSQM3rtjZKdkht7VGgU9oLD1A51FBN2d1pd0fJ0taPFG1I690Yehr3a64lmsMrB-72xAXn3H99uqj6BbBmWlQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient methods of non-myopic sensor management for multitarget tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kreucher, C. ; Hero, A.O. ; Kastella, K. ; Chang, D.</creator><creatorcontrib>Kreucher, C. ; Hero, A.O. ; Kastella, K. ; Chang, D.</creatorcontrib><description>This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering methods. The myopic sensor management scheme is based on maximizing the expected Renyi divergence between the JMPD and the JMPD after a new measurement is made. Since a full non-myopic solution is computationally intractable when looking more than a small number of time steps ahead, two approximate strategies are investigated. First, we develop an information-directed search which focuses Monte Carlo evaluations on action sequences that are most informative. Second, we give an approximate method of solving Bellman's equation which replaces the value-to-go with an easily computed function that approximates the long term value of the action. The performance of these methods is compared in terms of tracking performance and computational requirements.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780386822</identifier><identifier>ISBN: 0780386825</identifier><identifier>DOI: 10.1109/CDC.2004.1428735</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Computer science; control theory; systems ; Contracts ; Control theory. Systems ; Equations ; Exact sciences and technology ; Filtering ; Kinematics ; Monte Carlo methods ; Particle tracking ; Processor scheduling ; Recursive estimation ; Target tracking</subject><ispartof>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.1, p.722-727 Vol.1</ispartof><rights>2006 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1428735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1428735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17498109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreucher, C.</creatorcontrib><creatorcontrib>Hero, A.O.</creatorcontrib><creatorcontrib>Kastella, K.</creatorcontrib><creatorcontrib>Chang, D.</creatorcontrib><title>Efficient methods of non-myopic sensor management for multitarget tracking</title><title>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</title><addtitle>CDC</addtitle><description>This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering methods. The myopic sensor management scheme is based on maximizing the expected Renyi divergence between the JMPD and the JMPD after a new measurement is made. Since a full non-myopic solution is computationally intractable when looking more than a small number of time steps ahead, two approximate strategies are investigated. First, we develop an information-directed search which focuses Monte Carlo evaluations on action sequences that are most informative. Second, we give an approximate method of solving Bellman's equation which replaces the value-to-go with an easily computed function that approximates the long term value of the action. The performance of these methods is compared in terms of tracking performance and computational requirements.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Contracts</subject><subject>Control theory. Systems</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Kinematics</subject><subject>Monte Carlo methods</subject><subject>Particle tracking</subject><subject>Processor scheduling</subject><subject>Recursive estimation</subject><subject>Target tracking</subject><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1LAzEUxAMqWGvvgpe9eNz6ks0meUdZWz8oeNFzeZtNarSbLZt46H9vSwVhYBjmxxyGsRsOc84B75vHZi4A5JxLYXRVn7EZagMHVUYZIc7ZBDjyUgiuLtlVSl8AYECpCXtdeB9scDEXvcufQ5eKwRdxiGW_H3bBFsnFNIxFT5E2rj9y_hh_tjlkGjcuF3kk-x3i5ppdeNomN_vzKftYLt6b53L19vTSPKzKIKTOpUBvqDIeFXWKbNu2AjRiZ7GTsrXSQM3rtjZKdkht7VGgU9oLD1A51FBN2d1pd0fJ0taPFG1I690Yehr3a64lmsMrB-72xAXn3H99uqj6BbBmWlQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kreucher, C.</creator><creator>Hero, A.O.</creator><creator>Kastella, K.</creator><creator>Chang, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Efficient methods of non-myopic sensor management for multitarget tracking</title><author>Kreucher, C. ; Hero, A.O. ; Kastella, K. ; Chang, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i247t-29f8a38f96ad6acbbb20799dc9d44bc480515b5864d9ab5f929e67f2f003e9703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Contracts</topic><topic>Control theory. Systems</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Kinematics</topic><topic>Monte Carlo methods</topic><topic>Particle tracking</topic><topic>Processor scheduling</topic><topic>Recursive estimation</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Kreucher, C.</creatorcontrib><creatorcontrib>Hero, A.O.</creatorcontrib><creatorcontrib>Kastella, K.</creatorcontrib><creatorcontrib>Chang, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kreucher, C.</au><au>Hero, A.O.</au><au>Kastella, K.</au><au>Chang, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient methods of non-myopic sensor management for multitarget tracking</atitle><btitle>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</btitle><stitle>CDC</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>722</spage><epage>727 Vol.1</epage><pages>722-727 Vol.1</pages><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><abstract>This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering methods. The myopic sensor management scheme is based on maximizing the expected Renyi divergence between the JMPD and the JMPD after a new measurement is made. Since a full non-myopic solution is computationally intractable when looking more than a small number of time steps ahead, two approximate strategies are investigated. First, we develop an information-directed search which focuses Monte Carlo evaluations on action sequences that are most informative. Second, we give an approximate method of solving Bellman's equation which replaces the value-to-go with an easily computed function that approximates the long term value of the action. The performance of these methods is compared in terms of tracking performance and computational requirements.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CDC.2004.1428735</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0191-2216
ispartof 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.1, p.722-727 Vol.1
issn 0191-2216
language eng
recordid cdi_pascalfrancis_primary_17498109
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Applied sciences
Bayesian methods
Computer science
control theory
systems
Contracts
Control theory. Systems
Equations
Exact sciences and technology
Filtering
Kinematics
Monte Carlo methods
Particle tracking
Processor scheduling
Recursive estimation
Target tracking
title Efficient methods of non-myopic sensor management for multitarget tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20methods%20of%20non-myopic%20sensor%20management%20for%20multitarget%20tracking&rft.btitle=2004%2043rd%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20(IEEE%20Cat.%20No.04CH37601)&rft.au=Kreucher,%20C.&rft.date=2004&rft.volume=1&rft.spage=722&rft.epage=727%20Vol.1&rft.pages=722-727%20Vol.1&rft.issn=0191-2216&rft.isbn=9780780386822&rft.isbn_list=0780386825&rft_id=info:doi/10.1109/CDC.2004.1428735&rft_dat=%3Cpascalfrancis_6IE%3E17498109%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1428735&rfr_iscdi=true