Efficient methods of non-myopic sensor management for multitarget tracking
This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering met...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 727 Vol.1 |
---|---|
container_issue | |
container_start_page | 722 |
container_title | |
container_volume | 1 |
creator | Kreucher, C. Hero, A.O. Kastella, K. Chang, D. |
description | This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering methods. The myopic sensor management scheme is based on maximizing the expected Renyi divergence between the JMPD and the JMPD after a new measurement is made. Since a full non-myopic solution is computationally intractable when looking more than a small number of time steps ahead, two approximate strategies are investigated. First, we develop an information-directed search which focuses Monte Carlo evaluations on action sequences that are most informative. Second, we give an approximate method of solving Bellman's equation which replaces the value-to-go with an easily computed function that approximates the long term value of the action. The performance of these methods is compared in terms of tracking performance and computational requirements. |
doi_str_mv | 10.1109/CDC.2004.1428735 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_6IE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17498109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1428735</ieee_id><sourcerecordid>17498109</sourcerecordid><originalsourceid>FETCH-LOGICAL-i247t-29f8a38f96ad6acbbb20799dc9d44bc480515b5864d9ab5f929e67f2f003e9703</originalsourceid><addsrcrecordid>eNpFkM1LAzEUxAMqWGvvgpe9eNz6ks0meUdZWz8oeNFzeZtNarSbLZt46H9vSwVhYBjmxxyGsRsOc84B75vHZi4A5JxLYXRVn7EZagMHVUYZIc7ZBDjyUgiuLtlVSl8AYECpCXtdeB9scDEXvcufQ5eKwRdxiGW_H3bBFsnFNIxFT5E2rj9y_hh_tjlkGjcuF3kk-x3i5ppdeNomN_vzKftYLt6b53L19vTSPKzKIKTOpUBvqDIeFXWKbNu2AjRiZ7GTsrXSQM3rtjZKdkht7VGgU9oLD1A51FBN2d1pd0fJ0taPFG1I690Yehr3a64lmsMrB-72xAXn3H99uqj6BbBmWlQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient methods of non-myopic sensor management for multitarget tracking</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kreucher, C. ; Hero, A.O. ; Kastella, K. ; Chang, D.</creator><creatorcontrib>Kreucher, C. ; Hero, A.O. ; Kastella, K. ; Chang, D.</creatorcontrib><description>This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering methods. The myopic sensor management scheme is based on maximizing the expected Renyi divergence between the JMPD and the JMPD after a new measurement is made. Since a full non-myopic solution is computationally intractable when looking more than a small number of time steps ahead, two approximate strategies are investigated. First, we develop an information-directed search which focuses Monte Carlo evaluations on action sequences that are most informative. Second, we give an approximate method of solving Bellman's equation which replaces the value-to-go with an easily computed function that approximates the long term value of the action. The performance of these methods is compared in terms of tracking performance and computational requirements.</description><identifier>ISSN: 0191-2216</identifier><identifier>ISBN: 9780780386822</identifier><identifier>ISBN: 0780386825</identifier><identifier>DOI: 10.1109/CDC.2004.1428735</identifier><language>eng</language><publisher>Piscataway NJ: IEEE</publisher><subject>Applied sciences ; Bayesian methods ; Computer science; control theory; systems ; Contracts ; Control theory. Systems ; Equations ; Exact sciences and technology ; Filtering ; Kinematics ; Monte Carlo methods ; Particle tracking ; Processor scheduling ; Recursive estimation ; Target tracking</subject><ispartof>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.1, p.722-727 Vol.1</ispartof><rights>2006 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1428735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1428735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17498109$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kreucher, C.</creatorcontrib><creatorcontrib>Hero, A.O.</creatorcontrib><creatorcontrib>Kastella, K.</creatorcontrib><creatorcontrib>Chang, D.</creatorcontrib><title>Efficient methods of non-myopic sensor management for multitarget tracking</title><title>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</title><addtitle>CDC</addtitle><description>This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering methods. The myopic sensor management scheme is based on maximizing the expected Renyi divergence between the JMPD and the JMPD after a new measurement is made. Since a full non-myopic solution is computationally intractable when looking more than a small number of time steps ahead, two approximate strategies are investigated. First, we develop an information-directed search which focuses Monte Carlo evaluations on action sequences that are most informative. Second, we give an approximate method of solving Bellman's equation which replaces the value-to-go with an easily computed function that approximates the long term value of the action. The performance of these methods is compared in terms of tracking performance and computational requirements.</description><subject>Applied sciences</subject><subject>Bayesian methods</subject><subject>Computer science; control theory; systems</subject><subject>Contracts</subject><subject>Control theory. Systems</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Kinematics</subject><subject>Monte Carlo methods</subject><subject>Particle tracking</subject><subject>Processor scheduling</subject><subject>Recursive estimation</subject><subject>Target tracking</subject><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2004</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1LAzEUxAMqWGvvgpe9eNz6ks0meUdZWz8oeNFzeZtNarSbLZt46H9vSwVhYBjmxxyGsRsOc84B75vHZi4A5JxLYXRVn7EZagMHVUYZIc7ZBDjyUgiuLtlVSl8AYECpCXtdeB9scDEXvcufQ5eKwRdxiGW_H3bBFsnFNIxFT5E2rj9y_hh_tjlkGjcuF3kk-x3i5ppdeNomN_vzKftYLt6b53L19vTSPKzKIKTOpUBvqDIeFXWKbNu2AjRiZ7GTsrXSQM3rtjZKdkht7VGgU9oLD1A51FBN2d1pd0fJ0taPFG1I690Yehr3a64lmsMrB-72xAXn3H99uqj6BbBmWlQ</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Kreucher, C.</creator><creator>Hero, A.O.</creator><creator>Kastella, K.</creator><creator>Chang, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>IQODW</scope></search><sort><creationdate>2004</creationdate><title>Efficient methods of non-myopic sensor management for multitarget tracking</title><author>Kreucher, C. ; Hero, A.O. ; Kastella, K. ; Chang, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i247t-29f8a38f96ad6acbbb20799dc9d44bc480515b5864d9ab5f929e67f2f003e9703</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Bayesian methods</topic><topic>Computer science; control theory; systems</topic><topic>Contracts</topic><topic>Control theory. Systems</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Kinematics</topic><topic>Monte Carlo methods</topic><topic>Particle tracking</topic><topic>Processor scheduling</topic><topic>Recursive estimation</topic><topic>Target tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Kreucher, C.</creatorcontrib><creatorcontrib>Hero, A.O.</creatorcontrib><creatorcontrib>Kastella, K.</creatorcontrib><creatorcontrib>Chang, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kreucher, C.</au><au>Hero, A.O.</au><au>Kastella, K.</au><au>Chang, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient methods of non-myopic sensor management for multitarget tracking</atitle><btitle>2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601)</btitle><stitle>CDC</stitle><date>2004</date><risdate>2004</risdate><volume>1</volume><spage>722</spage><epage>727 Vol.1</epage><pages>722-727 Vol.1</pages><issn>0191-2216</issn><isbn>9780780386822</isbn><isbn>0780386825</isbn><abstract>This paper develops two efficient methods of long-term sensor management and investigates the benefit in the setting of multitarget tracking. The underlying tracking methodology is based on recursive estimation of a joint multitarget probability density (JMPD), implemented via particle filtering methods. The myopic sensor management scheme is based on maximizing the expected Renyi divergence between the JMPD and the JMPD after a new measurement is made. Since a full non-myopic solution is computationally intractable when looking more than a small number of time steps ahead, two approximate strategies are investigated. First, we develop an information-directed search which focuses Monte Carlo evaluations on action sequences that are most informative. Second, we give an approximate method of solving Bellman's equation which replaces the value-to-go with an easily computed function that approximates the long term value of the action. The performance of these methods is compared in terms of tracking performance and computational requirements.</abstract><cop>Piscataway NJ</cop><pub>IEEE</pub><doi>10.1109/CDC.2004.1428735</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0191-2216 |
ispartof | 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601), 2004, Vol.1, p.722-727 Vol.1 |
issn | 0191-2216 |
language | eng |
recordid | cdi_pascalfrancis_primary_17498109 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Applied sciences Bayesian methods Computer science control theory systems Contracts Control theory. Systems Equations Exact sciences and technology Filtering Kinematics Monte Carlo methods Particle tracking Processor scheduling Recursive estimation Target tracking |
title | Efficient methods of non-myopic sensor management for multitarget tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A00%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20methods%20of%20non-myopic%20sensor%20management%20for%20multitarget%20tracking&rft.btitle=2004%2043rd%20IEEE%20Conference%20on%20Decision%20and%20Control%20(CDC)%20(IEEE%20Cat.%20No.04CH37601)&rft.au=Kreucher,%20C.&rft.date=2004&rft.volume=1&rft.spage=722&rft.epage=727%20Vol.1&rft.pages=722-727%20Vol.1&rft.issn=0191-2216&rft.isbn=9780780386822&rft.isbn_list=0780386825&rft_id=info:doi/10.1109/CDC.2004.1428735&rft_dat=%3Cpascalfrancis_6IE%3E17498109%3C/pascalfrancis_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=1428735&rfr_iscdi=true |