Two-dimensional wave dynamics in thin films. I. Stationary solitary pulses

We consider two-dimensional stationary solitary pulses in a falling film by using the two-dimensional generalized Kuramoto-Sivashinsky equation as a model system. We numerically construct solitary wave solutions of this equation as a function of the dispersion parameter. We obtain an analytical esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2005-11, Vol.17 (11), p.117105-117105-16
Hauptverfasser: Saprykin, Sergey, Demekhin, Evgeny A., Kalliadasis, Serafim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117105-16
container_issue 11
container_start_page 117105
container_title Physics of fluids (1994)
container_volume 17
creator Saprykin, Sergey
Demekhin, Evgeny A.
Kalliadasis, Serafim
description We consider two-dimensional stationary solitary pulses in a falling film by using the two-dimensional generalized Kuramoto-Sivashinsky equation as a model system. We numerically construct solitary wave solutions of this equation as a function of the dispersion parameter. We obtain an analytical estimate for the speed of these waves in the strongly dispersive case by using a perturbation from the Korteweg-de Vries limit. An impulse response analysis in which the nonlinearity is replaced with a delta function leads to an approximate analytical solution for the shape of two-dimensional solitary waves. The analytical predictions are in excellent agreement with numerical results for the speed and shape of these waves.
doi_str_mv 10.1063/1.2128607
format Article
fullrecord <record><control><sourceid>scitation_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17455674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_2128607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-7ad83f0613e0b98215b7981496addf4e98a42665d78c67b7cf72a4879e137d813</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOI4ufINsXCi0Jk2apBtBBi8jAy4c1yHNBSO90dQZ5u1N6cC4Udyc_IsvP-d8AFxilGLEyC1OM5wJhvgRmGEkioQzxo7HzFHCGMGn4CyET4QQKTI2Ay_rbZsYX9sm-LZRFdyqjYVm16ja6wB9A4ePOJyv6pDCZQrfBjWMZL-Doa38MIbuqwo2nIMTp2K42L9z8P74sF48J6vXp-XifpVoIuiQcGUEcYhhYlFZiAznJS8EpgVTxjhqC6FoxlhuuNCMl1w7nikqeGEx4UZgMgfXU6_u2xB662TX-zruITGSowSJ5V5CZK8mtlNBq8r1qtE-HD5wmueM08jdTVzQfjrw99JoTP4wJkdjseDm3wV_wZu2P4CyM458A8yfjNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-dimensional wave dynamics in thin films. I. Stationary solitary pulses</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><creator>Saprykin, Sergey ; Demekhin, Evgeny A. ; Kalliadasis, Serafim</creator><creatorcontrib>Saprykin, Sergey ; Demekhin, Evgeny A. ; Kalliadasis, Serafim</creatorcontrib><description>We consider two-dimensional stationary solitary pulses in a falling film by using the two-dimensional generalized Kuramoto-Sivashinsky equation as a model system. We numerically construct solitary wave solutions of this equation as a function of the dispersion parameter. We obtain an analytical estimate for the speed of these waves in the strongly dispersive case by using a perturbation from the Korteweg-de Vries limit. An impulse response analysis in which the nonlinearity is replaced with a delta function leads to an approximate analytical solution for the shape of two-dimensional solitary waves. The analytical predictions are in excellent agreement with numerical results for the speed and shape of these waves.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.2128607</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic waves ; Physics</subject><ispartof>Physics of fluids (1994), 2005-11, Vol.17 (11), p.117105-117105-16</ispartof><rights>American Institute of Physics</rights><rights>2005 American Institute of Physics</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-7ad83f0613e0b98215b7981496addf4e98a42665d78c67b7cf72a4879e137d813</citedby><cites>FETCH-LOGICAL-c384t-7ad83f0613e0b98215b7981496addf4e98a42665d78c67b7cf72a4879e137d813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17455674$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Saprykin, Sergey</creatorcontrib><creatorcontrib>Demekhin, Evgeny A.</creatorcontrib><creatorcontrib>Kalliadasis, Serafim</creatorcontrib><title>Two-dimensional wave dynamics in thin films. I. Stationary solitary pulses</title><title>Physics of fluids (1994)</title><description>We consider two-dimensional stationary solitary pulses in a falling film by using the two-dimensional generalized Kuramoto-Sivashinsky equation as a model system. We numerically construct solitary wave solutions of this equation as a function of the dispersion parameter. We obtain an analytical estimate for the speed of these waves in the strongly dispersive case by using a perturbation from the Korteweg-de Vries limit. An impulse response analysis in which the nonlinearity is replaced with a delta function leads to an approximate analytical solution for the shape of two-dimensional solitary waves. The analytical predictions are in excellent agreement with numerical results for the speed and shape of these waves.</description><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic waves</subject><subject>Physics</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKxDAUhoMoOI4ufINsXCi0Jk2apBtBBi8jAy4c1yHNBSO90dQZ5u1N6cC4Udyc_IsvP-d8AFxilGLEyC1OM5wJhvgRmGEkioQzxo7HzFHCGMGn4CyET4QQKTI2Ay_rbZsYX9sm-LZRFdyqjYVm16ja6wB9A4ePOJyv6pDCZQrfBjWMZL-Doa38MIbuqwo2nIMTp2K42L9z8P74sF48J6vXp-XifpVoIuiQcGUEcYhhYlFZiAznJS8EpgVTxjhqC6FoxlhuuNCMl1w7nikqeGEx4UZgMgfXU6_u2xB662TX-zruITGSowSJ5V5CZK8mtlNBq8r1qtE-HD5wmueM08jdTVzQfjrw99JoTP4wJkdjseDm3wV_wZu2P4CyM458A8yfjNI</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Saprykin, Sergey</creator><creator>Demekhin, Evgeny A.</creator><creator>Kalliadasis, Serafim</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20051101</creationdate><title>Two-dimensional wave dynamics in thin films. I. Stationary solitary pulses</title><author>Saprykin, Sergey ; Demekhin, Evgeny A. ; Kalliadasis, Serafim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-7ad83f0613e0b98215b7981496addf4e98a42665d78c67b7cf72a4879e137d813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic waves</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saprykin, Sergey</creatorcontrib><creatorcontrib>Demekhin, Evgeny A.</creatorcontrib><creatorcontrib>Kalliadasis, Serafim</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saprykin, Sergey</au><au>Demekhin, Evgeny A.</au><au>Kalliadasis, Serafim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional wave dynamics in thin films. I. Stationary solitary pulses</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>17</volume><issue>11</issue><spage>117105</spage><epage>117105-16</epage><pages>117105-117105-16</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We consider two-dimensional stationary solitary pulses in a falling film by using the two-dimensional generalized Kuramoto-Sivashinsky equation as a model system. We numerically construct solitary wave solutions of this equation as a function of the dispersion parameter. We obtain an analytical estimate for the speed of these waves in the strongly dispersive case by using a perturbation from the Korteweg-de Vries limit. An impulse response analysis in which the nonlinearity is replaced with a delta function leads to an approximate analytical solution for the shape of two-dimensional solitary waves. The analytical predictions are in excellent agreement with numerical results for the speed and shape of these waves.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.2128607</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2005-11, Vol.17 (11), p.117105-117105-16
issn 1070-6631
1089-7666
language eng
recordid cdi_pascalfrancis_primary_17455674
source AIP Journals Complete; AIP Digital Archive
subjects Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic waves
Physics
title Two-dimensional wave dynamics in thin films. I. Stationary solitary pulses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A31%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20wave%20dynamics%20in%20thin%20films.%20I.%20Stationary%20solitary%20pulses&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Saprykin,%20Sergey&rft.date=2005-11-01&rft.volume=17&rft.issue=11&rft.spage=117105&rft.epage=117105-16&rft.pages=117105-117105-16&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.2128607&rft_dat=%3Cscitation_pasca%3Escitation_primary_10_1063_1_2128607%3C/scitation_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true