Probabilistic Reasoning Techniques for the Tactical Military Domain

The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Howard, Catherine, Stumptner, Markus
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue
container_start_page 46
container_title
container_volume
creator Howard, Catherine
Stumptner, Markus
description The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Oriented Probabilistic Relational Models. We compare the modeling and inferencing capabilities of these two languages and compare these capabilities against the requirements of the military situation assessment domain.
doi_str_mv 10.1007/11553939_7
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17437998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17437998</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-bd221fcb0fff919f63954cd2bf723a4801dcd0c0ba14908b8a744c393ba27d683</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhM2XRFtY-AVekFgC72s7sT2ili-pCITKbNlO3BrapMRh4N_jqkhMN9yj090RcoFwjQDyBrEsuebayAMy5qUAjlpDeUhGWCEWnAt9tDeYUrrCYzICDqzQUvBTMk7pAwCY1GxEpq9956yL65iG6OlbY1PXxnZJF41ftfHru0k0dD0dVg1dWJ8Zu6bPGR9s_0Nn3cbG9oycBLtOzfmfTsj7_d1i-ljMXx6eprfzYstQDYWrGcPgHYQQNOpQcV0KXzMXJONWKMDa1-DBWRQalFNWCuHzTmeZrCvFJ-Ryn7u1KdcIvW19TGbbx00uYzCvk1rvuKs9l7LVLpveuK77TAbB7O4z__fxX-yTXSs</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic Reasoning Techniques for the Tactical Military Domain</title><source>Springer Books</source><creator>Howard, Catherine ; Stumptner, Markus</creator><contributor>Howlett, Robert J. ; Jain, Lakhmi C. ; Khosla, Rajiv</contributor><creatorcontrib>Howard, Catherine ; Stumptner, Markus ; Howlett, Robert J. ; Jain, Lakhmi C. ; Khosla, Rajiv</creatorcontrib><description>The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Oriented Probabilistic Relational Models. We compare the modeling and inferencing capabilities of these two languages and compare these capabilities against the requirements of the military situation assessment domain.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540288961</identifier><identifier>ISBN: 9783540288961</identifier><identifier>ISBN: 3540288945</identifier><identifier>ISBN: 9783540288947</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540319905</identifier><identifier>EISBN: 9783540319900</identifier><identifier>DOI: 10.1007/11553939_7</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian Network ; Computer science; control theory; systems ; Descriptive Attribute ; Exact sciences and technology ; Information Fusion ; Object Orient ; Reference Node</subject><ispartof>Knowledge-Based Intelligent Information and Engineering Systems, 2005, p.46-53</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11553939_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11553939_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17437998$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Howlett, Robert J.</contributor><contributor>Jain, Lakhmi C.</contributor><contributor>Khosla, Rajiv</contributor><creatorcontrib>Howard, Catherine</creatorcontrib><creatorcontrib>Stumptner, Markus</creatorcontrib><title>Probabilistic Reasoning Techniques for the Tactical Military Domain</title><title>Knowledge-Based Intelligent Information and Engineering Systems</title><description>The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Oriented Probabilistic Relational Models. We compare the modeling and inferencing capabilities of these two languages and compare these capabilities against the requirements of the military situation assessment domain.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian Network</subject><subject>Computer science; control theory; systems</subject><subject>Descriptive Attribute</subject><subject>Exact sciences and technology</subject><subject>Information Fusion</subject><subject>Object Orient</subject><subject>Reference Node</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540288961</isbn><isbn>9783540288961</isbn><isbn>3540288945</isbn><isbn>9783540288947</isbn><isbn>3540319905</isbn><isbn>9783540319900</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkD1PwzAYhM2XRFtY-AVekFgC72s7sT2ili-pCITKbNlO3BrapMRh4N_jqkhMN9yj090RcoFwjQDyBrEsuebayAMy5qUAjlpDeUhGWCEWnAt9tDeYUrrCYzICDqzQUvBTMk7pAwCY1GxEpq9956yL65iG6OlbY1PXxnZJF41ftfHru0k0dD0dVg1dWJ8Zu6bPGR9s_0Nn3cbG9oycBLtOzfmfTsj7_d1i-ljMXx6eprfzYstQDYWrGcPgHYQQNOpQcV0KXzMXJONWKMDa1-DBWRQalFNWCuHzTmeZrCvFJ-Ryn7u1KdcIvW19TGbbx00uYzCvk1rvuKs9l7LVLpveuK77TAbB7O4z__fxX-yTXSs</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Howard, Catherine</creator><creator>Stumptner, Markus</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Probabilistic Reasoning Techniques for the Tactical Military Domain</title><author>Howard, Catherine ; Stumptner, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-bd221fcb0fff919f63954cd2bf723a4801dcd0c0ba14908b8a744c393ba27d683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian Network</topic><topic>Computer science; control theory; systems</topic><topic>Descriptive Attribute</topic><topic>Exact sciences and technology</topic><topic>Information Fusion</topic><topic>Object Orient</topic><topic>Reference Node</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, Catherine</creatorcontrib><creatorcontrib>Stumptner, Markus</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, Catherine</au><au>Stumptner, Markus</au><au>Howlett, Robert J.</au><au>Jain, Lakhmi C.</au><au>Khosla, Rajiv</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic Reasoning Techniques for the Tactical Military Domain</atitle><btitle>Knowledge-Based Intelligent Information and Engineering Systems</btitle><date>2005</date><risdate>2005</risdate><spage>46</spage><epage>53</epage><pages>46-53</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540288961</isbn><isbn>9783540288961</isbn><isbn>3540288945</isbn><isbn>9783540288947</isbn><eisbn>3540319905</eisbn><eisbn>9783540319900</eisbn><abstract>The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Oriented Probabilistic Relational Models. We compare the modeling and inferencing capabilities of these two languages and compare these capabilities against the requirements of the military situation assessment domain.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11553939_7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Knowledge-Based Intelligent Information and Engineering Systems, 2005, p.46-53
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17437998
source Springer Books
subjects Applied sciences
Artificial intelligence
Bayesian Network
Computer science
control theory
systems
Descriptive Attribute
Exact sciences and technology
Information Fusion
Object Orient
Reference Node
title Probabilistic Reasoning Techniques for the Tactical Military Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20Reasoning%20Techniques%20for%20the%20Tactical%20Military%20Domain&rft.btitle=Knowledge-Based%20Intelligent%20Information%20and%20Engineering%20Systems&rft.au=Howard,%20Catherine&rft.date=2005&rft.spage=46&rft.epage=53&rft.pages=46-53&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540288961&rft.isbn_list=9783540288961&rft.isbn_list=3540288945&rft.isbn_list=9783540288947&rft_id=info:doi/10.1007/11553939_7&rft_dat=%3Cpascalfrancis_sprin%3E17437998%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540319905&rft.eisbn_list=9783540319900&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true