Probabilistic Reasoning Techniques for the Tactical Military Domain
The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Or...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | |
container_start_page | 46 |
container_title | |
container_volume | |
creator | Howard, Catherine Stumptner, Markus |
description | The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Oriented Probabilistic Relational Models. We compare the modeling and inferencing capabilities of these two languages and compare these capabilities against the requirements of the military situation assessment domain. |
doi_str_mv | 10.1007/11553939_7 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17437998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17437998</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-bd221fcb0fff919f63954cd2bf723a4801dcd0c0ba14908b8a744c393ba27d683</originalsourceid><addsrcrecordid>eNpFkD1PwzAYhM2XRFtY-AVekFgC72s7sT2ili-pCITKbNlO3BrapMRh4N_jqkhMN9yj090RcoFwjQDyBrEsuebayAMy5qUAjlpDeUhGWCEWnAt9tDeYUrrCYzICDqzQUvBTMk7pAwCY1GxEpq9956yL65iG6OlbY1PXxnZJF41ftfHru0k0dD0dVg1dWJ8Zu6bPGR9s_0Nn3cbG9oycBLtOzfmfTsj7_d1i-ljMXx6eprfzYstQDYWrGcPgHYQQNOpQcV0KXzMXJONWKMDa1-DBWRQalFNWCuHzTmeZrCvFJ-Ryn7u1KdcIvW19TGbbx00uYzCvk1rvuKs9l7LVLpveuK77TAbB7O4z__fxX-yTXSs</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Probabilistic Reasoning Techniques for the Tactical Military Domain</title><source>Springer Books</source><creator>Howard, Catherine ; Stumptner, Markus</creator><contributor>Howlett, Robert J. ; Jain, Lakhmi C. ; Khosla, Rajiv</contributor><creatorcontrib>Howard, Catherine ; Stumptner, Markus ; Howlett, Robert J. ; Jain, Lakhmi C. ; Khosla, Rajiv</creatorcontrib><description>The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Oriented Probabilistic Relational Models. We compare the modeling and inferencing capabilities of these two languages and compare these capabilities against the requirements of the military situation assessment domain.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540288961</identifier><identifier>ISBN: 9783540288961</identifier><identifier>ISBN: 3540288945</identifier><identifier>ISBN: 9783540288947</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540319905</identifier><identifier>EISBN: 9783540319900</identifier><identifier>DOI: 10.1007/11553939_7</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Bayesian Network ; Computer science; control theory; systems ; Descriptive Attribute ; Exact sciences and technology ; Information Fusion ; Object Orient ; Reference Node</subject><ispartof>Knowledge-Based Intelligent Information and Engineering Systems, 2005, p.46-53</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11553939_7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11553939_7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17437998$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Howlett, Robert J.</contributor><contributor>Jain, Lakhmi C.</contributor><contributor>Khosla, Rajiv</contributor><creatorcontrib>Howard, Catherine</creatorcontrib><creatorcontrib>Stumptner, Markus</creatorcontrib><title>Probabilistic Reasoning Techniques for the Tactical Military Domain</title><title>Knowledge-Based Intelligent Information and Engineering Systems</title><description>The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Oriented Probabilistic Relational Models. We compare the modeling and inferencing capabilities of these two languages and compare these capabilities against the requirements of the military situation assessment domain.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Bayesian Network</subject><subject>Computer science; control theory; systems</subject><subject>Descriptive Attribute</subject><subject>Exact sciences and technology</subject><subject>Information Fusion</subject><subject>Object Orient</subject><subject>Reference Node</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540288961</isbn><isbn>9783540288961</isbn><isbn>3540288945</isbn><isbn>9783540288947</isbn><isbn>3540319905</isbn><isbn>9783540319900</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkD1PwzAYhM2XRFtY-AVekFgC72s7sT2ili-pCITKbNlO3BrapMRh4N_jqkhMN9yj090RcoFwjQDyBrEsuebayAMy5qUAjlpDeUhGWCEWnAt9tDeYUrrCYzICDqzQUvBTMk7pAwCY1GxEpq9956yL65iG6OlbY1PXxnZJF41ftfHru0k0dD0dVg1dWJ8Zu6bPGR9s_0Nn3cbG9oycBLtOzfmfTsj7_d1i-ljMXx6eprfzYstQDYWrGcPgHYQQNOpQcV0KXzMXJONWKMDa1-DBWRQalFNWCuHzTmeZrCvFJ-Ryn7u1KdcIvW19TGbbx00uYzCvk1rvuKs9l7LVLpveuK77TAbB7O4z__fxX-yTXSs</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Howard, Catherine</creator><creator>Stumptner, Markus</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Probabilistic Reasoning Techniques for the Tactical Military Domain</title><author>Howard, Catherine ; Stumptner, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-bd221fcb0fff919f63954cd2bf723a4801dcd0c0ba14908b8a744c393ba27d683</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Bayesian Network</topic><topic>Computer science; control theory; systems</topic><topic>Descriptive Attribute</topic><topic>Exact sciences and technology</topic><topic>Information Fusion</topic><topic>Object Orient</topic><topic>Reference Node</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, Catherine</creatorcontrib><creatorcontrib>Stumptner, Markus</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, Catherine</au><au>Stumptner, Markus</au><au>Howlett, Robert J.</au><au>Jain, Lakhmi C.</au><au>Khosla, Rajiv</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Probabilistic Reasoning Techniques for the Tactical Military Domain</atitle><btitle>Knowledge-Based Intelligent Information and Engineering Systems</btitle><date>2005</date><risdate>2005</risdate><spage>46</spage><epage>53</epage><pages>46-53</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540288961</isbn><isbn>9783540288961</isbn><isbn>3540288945</isbn><isbn>9783540288947</isbn><eisbn>3540319905</eisbn><eisbn>9783540319900</eisbn><abstract>The use of probabilistic reasoning is a key capability in information fusion systems for a variety of domains such as military situation assessment. In this paper, we discuss two key approaches to probabilistic reasoning in military situation assessment: Probabilistic Relational Models and Object Oriented Probabilistic Relational Models. We compare the modeling and inferencing capabilities of these two languages and compare these capabilities against the requirements of the military situation assessment domain.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11553939_7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Knowledge-Based Intelligent Information and Engineering Systems, 2005, p.46-53 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17437998 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Bayesian Network Computer science control theory systems Descriptive Attribute Exact sciences and technology Information Fusion Object Orient Reference Node |
title | Probabilistic Reasoning Techniques for the Tactical Military Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Probabilistic%20Reasoning%20Techniques%20for%20the%20Tactical%20Military%20Domain&rft.btitle=Knowledge-Based%20Intelligent%20Information%20and%20Engineering%20Systems&rft.au=Howard,%20Catherine&rft.date=2005&rft.spage=46&rft.epage=53&rft.pages=46-53&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540288961&rft.isbn_list=9783540288961&rft.isbn_list=3540288945&rft.isbn_list=9783540288947&rft_id=info:doi/10.1007/11553939_7&rft_dat=%3Cpascalfrancis_sprin%3E17437998%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540319905&rft.eisbn_list=9783540319900&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |