Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms

We propose an evolutionary-based approach to solve engineering design problems without using penalty functions. The aim is to identify and maintain infeasible solutions close to the feasible region located in promising areas. In this way, using the genetic operators, more solutions will be generated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mezura-Montes, Efrén, Coello, Carlos A. Coello
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 662
container_issue
container_start_page 652
container_title
container_volume
creator Mezura-Montes, Efrén
Coello, Carlos A. Coello
description We propose an evolutionary-based approach to solve engineering design problems without using penalty functions. The aim is to identify and maintain infeasible solutions close to the feasible region located in promising areas. In this way, using the genetic operators, more solutions will be generated inside the feasible region and also near its boundaries. As a result, the feasible region will be sampled well-enough as to reach better feasible solutions. The proposed approach, which is simple to implement, is tested with respect to typical penalty function techniques as well as against state-of-the-art approaches using four mechanical design problems. The results obtained are discussed and some conclusions are provided.
doi_str_mv 10.1007/11579427_66
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17416119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17416119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-1d79e2e96ea7494012d8d0e0bddd0de3feabb202e1fcb5f73d5787ae223c79d93</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxc0_iVA68QW8MDAEfLZjx2NVFahUqQPtbDmxUwypE8UpCD49idqBW06699PpvYfQHZBHIEQ-AWRScSq1EGfohmWcMBAZg3OUgABIGePqAk2VzEeNqlwJcokSwghNleTsGk1j_CDDMMgVlQnabKOrDjVehsqZ6Iva4bemPvS-CRH7gBdh54NznQ87vG57v_e_ZhTxt-_f8eLrxJruB8_qXdMN1328RVeVqaObnvYEbZ8Xm_lrulq_LOezVVpSAX0KVipHnRLOSK44AWpzSxwprLXEOjY4KgpKqIOqLLJKMpvJXBpHKSulsopN0P3xb2tiaeqqM6H0Ubed3w-GNEg-tjJyD0cutmMQ1-miaT6jBqLHWvW_WtkfuDZmlQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms</title><source>Springer Books</source><creator>Mezura-Montes, Efrén ; Coello, Carlos A. Coello</creator><contributor>Terashima-Marín, Hugo ; de Albornoz, Álvaro ; Gelbukh, Alexander</contributor><creatorcontrib>Mezura-Montes, Efrén ; Coello, Carlos A. Coello ; Terashima-Marín, Hugo ; de Albornoz, Álvaro ; Gelbukh, Alexander</creatorcontrib><description>We propose an evolutionary-based approach to solve engineering design problems without using penalty functions. The aim is to identify and maintain infeasible solutions close to the feasible region located in promising areas. In this way, using the genetic operators, more solutions will be generated inside the feasible region and also near its boundaries. As a result, the feasible region will be sampled well-enough as to reach better feasible solutions. The proposed approach, which is simple to implement, is tested with respect to typical penalty function techniques as well as against state-of-the-art approaches using four mechanical design problems. The results obtained are discussed and some conclusions are provided.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540298960</identifier><identifier>ISBN: 3540298967</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316531</identifier><identifier>EISBN: 9783540316534</identifier><identifier>DOI: 10.1007/11579427_66</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Constraint Violation ; Evolutionary Algorithm ; Exact sciences and technology ; Feasible Region ; Feasible Solution ; Penalty Function ; Problem solving, game playing</subject><ispartof>Lecture notes in computer science, 2005, p.652-662</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-1d79e2e96ea7494012d8d0e0bddd0de3feabb202e1fcb5f73d5787ae223c79d93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11579427_66$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11579427_66$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17416119$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Terashima-Marín, Hugo</contributor><contributor>de Albornoz, Álvaro</contributor><contributor>Gelbukh, Alexander</contributor><creatorcontrib>Mezura-Montes, Efrén</creatorcontrib><creatorcontrib>Coello, Carlos A. Coello</creatorcontrib><title>Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms</title><title>Lecture notes in computer science</title><description>We propose an evolutionary-based approach to solve engineering design problems without using penalty functions. The aim is to identify and maintain infeasible solutions close to the feasible region located in promising areas. In this way, using the genetic operators, more solutions will be generated inside the feasible region and also near its boundaries. As a result, the feasible region will be sampled well-enough as to reach better feasible solutions. The proposed approach, which is simple to implement, is tested with respect to typical penalty function techniques as well as against state-of-the-art approaches using four mechanical design problems. The results obtained are discussed and some conclusions are provided.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Constraint Violation</subject><subject>Evolutionary Algorithm</subject><subject>Exact sciences and technology</subject><subject>Feasible Region</subject><subject>Feasible Solution</subject><subject>Penalty Function</subject><subject>Problem solving, game playing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540298960</isbn><isbn>3540298967</isbn><isbn>3540316531</isbn><isbn>9783540316534</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD9PwzAQxc0_iVA68QW8MDAEfLZjx2NVFahUqQPtbDmxUwypE8UpCD49idqBW06699PpvYfQHZBHIEQ-AWRScSq1EGfohmWcMBAZg3OUgABIGePqAk2VzEeNqlwJcokSwghNleTsGk1j_CDDMMgVlQnabKOrDjVehsqZ6Iva4bemPvS-CRH7gBdh54NznQ87vG57v_e_ZhTxt-_f8eLrxJruB8_qXdMN1328RVeVqaObnvYEbZ8Xm_lrulq_LOezVVpSAX0KVipHnRLOSK44AWpzSxwprLXEOjY4KgpKqIOqLLJKMpvJXBpHKSulsopN0P3xb2tiaeqqM6H0Ubed3w-GNEg-tjJyD0cutmMQ1-miaT6jBqLHWvW_WtkfuDZmlQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Mezura-Montes, Efrén</creator><creator>Coello, Carlos A. Coello</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms</title><author>Mezura-Montes, Efrén ; Coello, Carlos A. Coello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-1d79e2e96ea7494012d8d0e0bddd0de3feabb202e1fcb5f73d5787ae223c79d93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Constraint Violation</topic><topic>Evolutionary Algorithm</topic><topic>Exact sciences and technology</topic><topic>Feasible Region</topic><topic>Feasible Solution</topic><topic>Penalty Function</topic><topic>Problem solving, game playing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mezura-Montes, Efrén</creatorcontrib><creatorcontrib>Coello, Carlos A. Coello</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mezura-Montes, Efrén</au><au>Coello, Carlos A. Coello</au><au>Terashima-Marín, Hugo</au><au>de Albornoz, Álvaro</au><au>Gelbukh, Alexander</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>652</spage><epage>662</epage><pages>652-662</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540298960</isbn><isbn>3540298967</isbn><eisbn>3540316531</eisbn><eisbn>9783540316534</eisbn><abstract>We propose an evolutionary-based approach to solve engineering design problems without using penalty functions. The aim is to identify and maintain infeasible solutions close to the feasible region located in promising areas. In this way, using the genetic operators, more solutions will be generated inside the feasible region and also near its boundaries. As a result, the feasible region will be sampled well-enough as to reach better feasible solutions. The proposed approach, which is simple to implement, is tested with respect to typical penalty function techniques as well as against state-of-the-art approaches using four mechanical design problems. The results obtained are discussed and some conclusions are provided.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11579427_66</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.652-662
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17416119
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Constraint Violation
Evolutionary Algorithm
Exact sciences and technology
Feasible Region
Feasible Solution
Penalty Function
Problem solving, game playing
title Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Useful%20Infeasible%20Solutions%20in%20Engineering%20Optimization%20with%20Evolutionary%20Algorithms&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Mezura-Montes,%20Efr%C3%A9n&rft.date=2005&rft.spage=652&rft.epage=662&rft.pages=652-662&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540298960&rft.isbn_list=3540298967&rft_id=info:doi/10.1007/11579427_66&rft_dat=%3Cpascalfrancis_sprin%3E17416119%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316531&rft.eisbn_list=9783540316534&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true