Real Time Facial Expression Recognition Using Local Binary Patterns and Linear Programming

In this paper, a fully automatic, real-time system is proposed to recognize seven basic facial expressions (angry, disgust, fear, happiness, neutral, sadness and surprise). First, faces are located and normalized based on an illumination insensitive skin model and face segmentation; then, the Local...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Feng, Xiaoyi, Cui, Jie, Pietikäinen, Matti, Hadid, Abdenour
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue
container_start_page 328
container_title
container_volume
creator Feng, Xiaoyi
Cui, Jie
Pietikäinen, Matti
Hadid, Abdenour
description In this paper, a fully automatic, real-time system is proposed to recognize seven basic facial expressions (angry, disgust, fear, happiness, neutral, sadness and surprise). First, faces are located and normalized based on an illumination insensitive skin model and face segmentation; then, the Local Binary Patterns (LBP) techniques, which are invariant to monotonic grey level changes, are used for facial feature extraction; finally, the Linear Programming (LP) technique is employed to classify seven facial expressions. Theoretical analysis and experimental results show that the proposed system performs well in some degree of illumination changes and head rotations.
doi_str_mv 10.1007/11579427_33
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17416086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17416086</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-bf42d8377b7cabb937428fa8c1f536bd5991617832b9d4d8c77e7ebfca2b49423</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhc1LopRO_AEvDAwBvxLbI1QtIEWiqtqFxbIdJzIQJ7IzwL_HVRm4yz3S-XR1zwHgBqN7jBB_wLjkkhGuKD0BV7RkiOKqpPgUzHCFcUEpk2dgIbk4eEQKWaFzMEMUkUJyRi_BIqUPlIdiIQmfgfet019w53sH19r6rFffY3Qp-SHArbNDF_x00PvkQwfrwWbkyQcdf-BGT5OLIUEdGlj74HSEmzh0Ufd9hq_BRau_klv87TnYr1e75UtRvz2_Lh_rYiRYToVpGWkE5dxwq42RlDMiWi0sbktamaaUMmfLiYiRDWuE5dxxZ1qriWG5DDoHt8e7o075uzbqYH1SY_R9_lJhznCFRJW5uyOXshU6F5UZhs-kMFKHctW_cukv3nJmsw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real Time Facial Expression Recognition Using Local Binary Patterns and Linear Programming</title><source>Springer Books</source><creator>Feng, Xiaoyi ; Cui, Jie ; Pietikäinen, Matti ; Hadid, Abdenour</creator><contributor>Terashima-Marín, Hugo ; de Albornoz, Álvaro ; Gelbukh, Alexander</contributor><creatorcontrib>Feng, Xiaoyi ; Cui, Jie ; Pietikäinen, Matti ; Hadid, Abdenour ; Terashima-Marín, Hugo ; de Albornoz, Álvaro ; Gelbukh, Alexander</creatorcontrib><description>In this paper, a fully automatic, real-time system is proposed to recognize seven basic facial expressions (angry, disgust, fear, happiness, neutral, sadness and surprise). First, faces are located and normalized based on an illumination insensitive skin model and face segmentation; then, the Local Binary Patterns (LBP) techniques, which are invariant to monotonic grey level changes, are used for facial feature extraction; finally, the Linear Programming (LP) technique is employed to classify seven facial expressions. Theoretical analysis and experimental results show that the proposed system performs well in some degree of illumination changes and head rotations.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540298960</identifier><identifier>ISBN: 3540298967</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540316531</identifier><identifier>EISBN: 9783540316534</identifier><identifier>DOI: 10.1007/11579427_33</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Expression Recognition ; Facial Expression ; Facial Expression Recognition ; Facial Feature ; Local Binary Pattern ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Lecture notes in computer science, 2005, p.328-336</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11579427_33$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11579427_33$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17416086$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Terashima-Marín, Hugo</contributor><contributor>de Albornoz, Álvaro</contributor><contributor>Gelbukh, Alexander</contributor><creatorcontrib>Feng, Xiaoyi</creatorcontrib><creatorcontrib>Cui, Jie</creatorcontrib><creatorcontrib>Pietikäinen, Matti</creatorcontrib><creatorcontrib>Hadid, Abdenour</creatorcontrib><title>Real Time Facial Expression Recognition Using Local Binary Patterns and Linear Programming</title><title>Lecture notes in computer science</title><description>In this paper, a fully automatic, real-time system is proposed to recognize seven basic facial expressions (angry, disgust, fear, happiness, neutral, sadness and surprise). First, faces are located and normalized based on an illumination insensitive skin model and face segmentation; then, the Local Binary Patterns (LBP) techniques, which are invariant to monotonic grey level changes, are used for facial feature extraction; finally, the Linear Programming (LP) technique is employed to classify seven facial expressions. Theoretical analysis and experimental results show that the proposed system performs well in some degree of illumination changes and head rotations.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Expression Recognition</subject><subject>Facial Expression</subject><subject>Facial Expression Recognition</subject><subject>Facial Feature</subject><subject>Local Binary Pattern</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540298960</isbn><isbn>3540298967</isbn><isbn>3540316531</isbn><isbn>9783540316534</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPwzAUhc1LopRO_AEvDAwBvxLbI1QtIEWiqtqFxbIdJzIQJ7IzwL_HVRm4yz3S-XR1zwHgBqN7jBB_wLjkkhGuKD0BV7RkiOKqpPgUzHCFcUEpk2dgIbk4eEQKWaFzMEMUkUJyRi_BIqUPlIdiIQmfgfet019w53sH19r6rFffY3Qp-SHArbNDF_x00PvkQwfrwWbkyQcdf-BGT5OLIUEdGlj74HSEmzh0Ufd9hq_BRau_klv87TnYr1e75UtRvz2_Lh_rYiRYToVpGWkE5dxwq42RlDMiWi0sbktamaaUMmfLiYiRDWuE5dxxZ1qriWG5DDoHt8e7o075uzbqYH1SY_R9_lJhznCFRJW5uyOXshU6F5UZhs-kMFKHctW_cukv3nJmsw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Feng, Xiaoyi</creator><creator>Cui, Jie</creator><creator>Pietikäinen, Matti</creator><creator>Hadid, Abdenour</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Real Time Facial Expression Recognition Using Local Binary Patterns and Linear Programming</title><author>Feng, Xiaoyi ; Cui, Jie ; Pietikäinen, Matti ; Hadid, Abdenour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-bf42d8377b7cabb937428fa8c1f536bd5991617832b9d4d8c77e7ebfca2b49423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Expression Recognition</topic><topic>Facial Expression</topic><topic>Facial Expression Recognition</topic><topic>Facial Feature</topic><topic>Local Binary Pattern</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiaoyi</creatorcontrib><creatorcontrib>Cui, Jie</creatorcontrib><creatorcontrib>Pietikäinen, Matti</creatorcontrib><creatorcontrib>Hadid, Abdenour</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xiaoyi</au><au>Cui, Jie</au><au>Pietikäinen, Matti</au><au>Hadid, Abdenour</au><au>Terashima-Marín, Hugo</au><au>de Albornoz, Álvaro</au><au>Gelbukh, Alexander</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real Time Facial Expression Recognition Using Local Binary Patterns and Linear Programming</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>328</spage><epage>336</epage><pages>328-336</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540298960</isbn><isbn>3540298967</isbn><eisbn>3540316531</eisbn><eisbn>9783540316534</eisbn><abstract>In this paper, a fully automatic, real-time system is proposed to recognize seven basic facial expressions (angry, disgust, fear, happiness, neutral, sadness and surprise). First, faces are located and normalized based on an illumination insensitive skin model and face segmentation; then, the Local Binary Patterns (LBP) techniques, which are invariant to monotonic grey level changes, are used for facial feature extraction; finally, the Linear Programming (LP) technique is employed to classify seven facial expressions. Theoretical analysis and experimental results show that the proposed system performs well in some degree of illumination changes and head rotations.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11579427_33</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.328-336
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17416086
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Expression Recognition
Facial Expression
Facial Expression Recognition
Facial Feature
Local Binary Pattern
Pattern recognition. Digital image processing. Computational geometry
title Real Time Facial Expression Recognition Using Local Binary Patterns and Linear Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A13%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real%20Time%20Facial%20Expression%20Recognition%20Using%20Local%20Binary%20Patterns%20and%20Linear%20Programming&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Feng,%20Xiaoyi&rft.date=2005&rft.spage=328&rft.epage=336&rft.pages=328-336&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540298960&rft.isbn_list=3540298967&rft_id=info:doi/10.1007/11579427_33&rft_dat=%3Cpascalfrancis_sprin%3E17416086%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540316531&rft.eisbn_list=9783540316534&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true