Uncertainty and RuleML Rulebases: A Preliminary Report
Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | |
container_start_page | 199 |
container_title | |
container_volume | |
creator | Stoilos, Giorgos Stamou, Giorgos Tzouvaras, Vassilis Pan, Jeff Z. |
description | Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics for the case of fuzzy FOL RuleML. |
doi_str_mv | 10.1007/11580072_17 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17414645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17414645</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-2de1d2c7800e52410ba58d7c2bf2cffbfd0370563c40032679b7d31df9773503</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhc1LopRO_IEsDAwB32s7jtmqipcUBKqKxBY5fqBAmkZ2GPrvcSkDdznDObr69BFyAfQaKJU3AKJMiTXIAzJTsmSCU4YoKR6SCRQAOWNcHZGzXYFKIb4fkwllFHMlOTslsxg_aToGqlQwIcVbb1wYdduP20z3Nlt-d-65-o1GRxdvs3n2GlzXrtteh222dMMmjOfkxOsuutlfTsnq_m61eMyrl4enxbzKBwQ15mgdWDQyQTuBHGijRWmlwcaj8b7xljJJRcEMT0hYSNVIy8B6JSUTlE3J5f7toKPRnQ-6N22sh9CuE0uywIEXXKTd1X4XU9V_uFA3m81XrIHWO2_1P2_sB4zsWGk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Uncertainty and RuleML Rulebases: A Preliminary Report</title><source>Springer Books</source><creator>Stoilos, Giorgos ; Stamou, Giorgos ; Tzouvaras, Vassilis ; Pan, Jeff Z.</creator><contributor>Tabet, Said ; Stoutenburg, Suzette ; Adi, Asaf</contributor><creatorcontrib>Stoilos, Giorgos ; Stamou, Giorgos ; Tzouvaras, Vassilis ; Pan, Jeff Z. ; Tabet, Said ; Stoutenburg, Suzette ; Adi, Asaf</creatorcontrib><description>Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics for the case of fuzzy FOL RuleML.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354029922X</identifier><identifier>ISBN: 9783540299226</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540322702</identifier><identifier>EISBN: 3540322701</identifier><identifier>DOI: 10.1007/11580072_17</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Programming languages ; Software</subject><ispartof>Lecture notes in computer science, 2005, p.199-203</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11580072_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11580072_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17414645$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tabet, Said</contributor><contributor>Stoutenburg, Suzette</contributor><contributor>Adi, Asaf</contributor><creatorcontrib>Stoilos, Giorgos</creatorcontrib><creatorcontrib>Stamou, Giorgos</creatorcontrib><creatorcontrib>Tzouvaras, Vassilis</creatorcontrib><creatorcontrib>Pan, Jeff Z.</creatorcontrib><title>Uncertainty and RuleML Rulebases: A Preliminary Report</title><title>Lecture notes in computer science</title><description>Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics for the case of fuzzy FOL RuleML.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Programming languages</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354029922X</isbn><isbn>9783540299226</isbn><isbn>9783540322702</isbn><isbn>3540322701</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPwzAUhc1LopRO_IEsDAwB32s7jtmqipcUBKqKxBY5fqBAmkZ2GPrvcSkDdznDObr69BFyAfQaKJU3AKJMiTXIAzJTsmSCU4YoKR6SCRQAOWNcHZGzXYFKIb4fkwllFHMlOTslsxg_aToGqlQwIcVbb1wYdduP20z3Nlt-d-65-o1GRxdvs3n2GlzXrtteh222dMMmjOfkxOsuutlfTsnq_m61eMyrl4enxbzKBwQ15mgdWDQyQTuBHGijRWmlwcaj8b7xljJJRcEMT0hYSNVIy8B6JSUTlE3J5f7toKPRnQ-6N22sh9CuE0uywIEXXKTd1X4XU9V_uFA3m81XrIHWO2_1P2_sB4zsWGk</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Stoilos, Giorgos</creator><creator>Stamou, Giorgos</creator><creator>Tzouvaras, Vassilis</creator><creator>Pan, Jeff Z.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Uncertainty and RuleML Rulebases: A Preliminary Report</title><author>Stoilos, Giorgos ; Stamou, Giorgos ; Tzouvaras, Vassilis ; Pan, Jeff Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-2de1d2c7800e52410ba58d7c2bf2cffbfd0370563c40032679b7d31df9773503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Programming languages</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoilos, Giorgos</creatorcontrib><creatorcontrib>Stamou, Giorgos</creatorcontrib><creatorcontrib>Tzouvaras, Vassilis</creatorcontrib><creatorcontrib>Pan, Jeff Z.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoilos, Giorgos</au><au>Stamou, Giorgos</au><au>Tzouvaras, Vassilis</au><au>Pan, Jeff Z.</au><au>Tabet, Said</au><au>Stoutenburg, Suzette</au><au>Adi, Asaf</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uncertainty and RuleML Rulebases: A Preliminary Report</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>199</spage><epage>203</epage><pages>199-203</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354029922X</isbn><isbn>9783540299226</isbn><eisbn>9783540322702</eisbn><eisbn>3540322701</eisbn><abstract>Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics for the case of fuzzy FOL RuleML.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11580072_17</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2005, p.199-203 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17414645 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Programming languages Software |
title | Uncertainty and RuleML Rulebases: A Preliminary Report |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uncertainty%20and%20RuleML%20Rulebases:%20A%20Preliminary%20Report&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Stoilos,%20Giorgos&rft.date=2005&rft.spage=199&rft.epage=203&rft.pages=199-203&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354029922X&rft.isbn_list=9783540299226&rft_id=info:doi/10.1007/11580072_17&rft_dat=%3Cpascalfrancis_sprin%3E17414645%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540322702&rft.eisbn_list=3540322701&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |