Uncertainty and RuleML Rulebases: A Preliminary Report

Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Stoilos, Giorgos, Stamou, Giorgos, Tzouvaras, Vassilis, Pan, Jeff Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue
container_start_page 199
container_title
container_volume
creator Stoilos, Giorgos
Stamou, Giorgos
Tzouvaras, Vassilis
Pan, Jeff Z.
description Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics for the case of fuzzy FOL RuleML.
doi_str_mv 10.1007/11580072_17
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17414645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17414645</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-2de1d2c7800e52410ba58d7c2bf2cffbfd0370563c40032679b7d31df9773503</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhc1LopRO_IEsDAwB32s7jtmqipcUBKqKxBY5fqBAmkZ2GPrvcSkDdznDObr69BFyAfQaKJU3AKJMiTXIAzJTsmSCU4YoKR6SCRQAOWNcHZGzXYFKIb4fkwllFHMlOTslsxg_aToGqlQwIcVbb1wYdduP20z3Nlt-d-65-o1GRxdvs3n2GlzXrtteh222dMMmjOfkxOsuutlfTsnq_m61eMyrl4enxbzKBwQ15mgdWDQyQTuBHGijRWmlwcaj8b7xljJJRcEMT0hYSNVIy8B6JSUTlE3J5f7toKPRnQ-6N22sh9CuE0uywIEXXKTd1X4XU9V_uFA3m81XrIHWO2_1P2_sB4zsWGk</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Uncertainty and RuleML Rulebases: A Preliminary Report</title><source>Springer Books</source><creator>Stoilos, Giorgos ; Stamou, Giorgos ; Tzouvaras, Vassilis ; Pan, Jeff Z.</creator><contributor>Tabet, Said ; Stoutenburg, Suzette ; Adi, Asaf</contributor><creatorcontrib>Stoilos, Giorgos ; Stamou, Giorgos ; Tzouvaras, Vassilis ; Pan, Jeff Z. ; Tabet, Said ; Stoutenburg, Suzette ; Adi, Asaf</creatorcontrib><description>Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics for the case of fuzzy FOL RuleML.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 354029922X</identifier><identifier>ISBN: 9783540299226</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540322702</identifier><identifier>EISBN: 3540322701</identifier><identifier>DOI: 10.1007/11580072_17</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Programming languages ; Software</subject><ispartof>Lecture notes in computer science, 2005, p.199-203</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11580072_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11580072_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17414645$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Tabet, Said</contributor><contributor>Stoutenburg, Suzette</contributor><contributor>Adi, Asaf</contributor><creatorcontrib>Stoilos, Giorgos</creatorcontrib><creatorcontrib>Stamou, Giorgos</creatorcontrib><creatorcontrib>Tzouvaras, Vassilis</creatorcontrib><creatorcontrib>Pan, Jeff Z.</creatorcontrib><title>Uncertainty and RuleML Rulebases: A Preliminary Report</title><title>Lecture notes in computer science</title><description>Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics for the case of fuzzy FOL RuleML.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Programming languages</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>354029922X</isbn><isbn>9783540299226</isbn><isbn>9783540322702</isbn><isbn>3540322701</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPwzAUhc1LopRO_IEsDAwB32s7jtmqipcUBKqKxBY5fqBAmkZ2GPrvcSkDdznDObr69BFyAfQaKJU3AKJMiTXIAzJTsmSCU4YoKR6SCRQAOWNcHZGzXYFKIb4fkwllFHMlOTslsxg_aToGqlQwIcVbb1wYdduP20z3Nlt-d-65-o1GRxdvs3n2GlzXrtteh222dMMmjOfkxOsuutlfTsnq_m61eMyrl4enxbzKBwQ15mgdWDQyQTuBHGijRWmlwcaj8b7xljJJRcEMT0hYSNVIy8B6JSUTlE3J5f7toKPRnQ-6N22sh9CuE0uywIEXXKTd1X4XU9V_uFA3m81XrIHWO2_1P2_sB4zsWGk</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Stoilos, Giorgos</creator><creator>Stamou, Giorgos</creator><creator>Tzouvaras, Vassilis</creator><creator>Pan, Jeff Z.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Uncertainty and RuleML Rulebases: A Preliminary Report</title><author>Stoilos, Giorgos ; Stamou, Giorgos ; Tzouvaras, Vassilis ; Pan, Jeff Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-2de1d2c7800e52410ba58d7c2bf2cffbfd0370563c40032679b7d31df9773503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Programming languages</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoilos, Giorgos</creatorcontrib><creatorcontrib>Stamou, Giorgos</creatorcontrib><creatorcontrib>Tzouvaras, Vassilis</creatorcontrib><creatorcontrib>Pan, Jeff Z.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoilos, Giorgos</au><au>Stamou, Giorgos</au><au>Tzouvaras, Vassilis</au><au>Pan, Jeff Z.</au><au>Tabet, Said</au><au>Stoutenburg, Suzette</au><au>Adi, Asaf</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uncertainty and RuleML Rulebases: A Preliminary Report</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>199</spage><epage>203</epage><pages>199-203</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>354029922X</isbn><isbn>9783540299226</isbn><eisbn>9783540322702</eisbn><eisbn>3540322701</eisbn><abstract>Uncertainty, like imprecision and vagueness, has gained considerable attention the last decade. To this extend we present a preliminary report on extending the Rule Markup Language (RuleML) with fuzzy set theory, in order to be able to represent and handle vague knowledge. We also provide semantics for the case of fuzzy FOL RuleML.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11580072_17</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.199-203
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17414645
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Programming languages
Software
title Uncertainty and RuleML Rulebases: A Preliminary Report
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uncertainty%20and%20RuleML%20Rulebases:%20A%20Preliminary%20Report&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Stoilos,%20Giorgos&rft.date=2005&rft.spage=199&rft.epage=203&rft.pages=199-203&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=354029922X&rft.isbn_list=9783540299226&rft_id=info:doi/10.1007/11580072_17&rft_dat=%3Cpascalfrancis_sprin%3E17414645%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540322702&rft.eisbn_list=3540322701&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true