Adaptive Trees and Pose Identification from External Contours of Polyhedra

We first describe two stochastic algorithms which build trees in high dimensional Euclidean spaces with some adaptation to the geometry of a chosen target subset. The second one produces search trees and is used to approximately identify in real time the pose of a polyhedron from its external contou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kergosien, Yannick L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 168
container_issue
container_start_page 157
container_title
container_volume
creator Kergosien, Yannick L.
description We first describe two stochastic algorithms which build trees in high dimensional Euclidean spaces with some adaptation to the geometry of a chosen target subset. The second one produces search trees and is used to approximately identify in real time the pose of a polyhedron from its external contour. A search tree is first grown in a space of shapes of plane curves which are a set of precomputed polygonal outlines of the polyhedron. The tree is then used to find in real time a best match to the outline of the polyhedron in the current pose. Analyzing the deformation of the curves along the tree thus built, shows progressive differentiation from a simple convex root shape to the various possible external contours, and the tree organizes the complex set of shapes into a more comprehensible object.
doi_str_mv 10.1007/11577812_14
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17413601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17413601</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-3823913a27d180a7c0afa2a835772006f39f8cd4415be73ad9ba0be3e03b12dc3</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhc1Loi2d-ANZGBgC9_qmcTxWVXmpEgxljm5iGwJpHNkB0X9PqzIwneH7dHR0hLhEuEEAdYs4U6pAWWJ2JMY0y4AkaAXHYoQ5YkqU6RMx1arYM6kLyvNTMQICmWqV0bkYx_gBAFJpORJPc8P90HzbZB2sjQl3Jnnx0SaPxnZD45qah8Z3iQt-kyx_Bhs6bpOF7wb_FWLi3c5ut-_WBL4QZ47baKd_ORGvd8v14iFdPd8_LuartJeoh5QKSRqJpTJYAKsa2LHk3VylJEDuSLuiNlmGs8oqYqMrhsqSBapQmpom4urQ23OsuXWBu7qJZR-aDYdtiSpDygF33vXBizvUvdlQVt5_xhKh3D9Z_nuSfgHHAmAC</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive Trees and Pose Identification from External Contours of Polyhedra</title><source>Springer Books</source><creator>Kergosien, Yannick L.</creator><contributor>Kuijper, Arjan ; Florack, Luc ; Fogh Olsen, Ole</contributor><creatorcontrib>Kergosien, Yannick L. ; Kuijper, Arjan ; Florack, Luc ; Fogh Olsen, Ole</creatorcontrib><description>We first describe two stochastic algorithms which build trees in high dimensional Euclidean spaces with some adaptation to the geometry of a chosen target subset. The second one produces search trees and is used to approximately identify in real time the pose of a polyhedron from its external contour. A search tree is first grown in a space of shapes of plane curves which are a set of precomputed polygonal outlines of the polyhedron. The tree is then used to find in real time a best match to the outline of the polyhedron in the current pose. Analyzing the deformation of the curves along the tree thus built, shows progressive differentiation from a simple convex root shape to the various possible external contours, and the tree organizes the complex set of shapes into a more comprehensible object.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540298366</identifier><identifier>ISBN: 3540298363</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320970</identifier><identifier>EISBN: 9783540320975</identifier><identifier>DOI: 10.1007/11577812_14</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive Tree ; Applied sciences ; Artificial intelligence ; Binary Search Tree ; Computer science; control theory; systems ; Exact sciences and technology ; External Contour ; Pattern recognition. Digital image processing. Computational geometry ; Plane Curf ; Search Tree</subject><ispartof>Deep Structure, Singularities, and Computer Vision, 2005, p.157-168</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11577812_14$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11577812_14$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17413601$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Kuijper, Arjan</contributor><contributor>Florack, Luc</contributor><contributor>Fogh Olsen, Ole</contributor><creatorcontrib>Kergosien, Yannick L.</creatorcontrib><title>Adaptive Trees and Pose Identification from External Contours of Polyhedra</title><title>Deep Structure, Singularities, and Computer Vision</title><description>We first describe two stochastic algorithms which build trees in high dimensional Euclidean spaces with some adaptation to the geometry of a chosen target subset. The second one produces search trees and is used to approximately identify in real time the pose of a polyhedron from its external contour. A search tree is first grown in a space of shapes of plane curves which are a set of precomputed polygonal outlines of the polyhedron. The tree is then used to find in real time a best match to the outline of the polyhedron in the current pose. Analyzing the deformation of the curves along the tree thus built, shows progressive differentiation from a simple convex root shape to the various possible external contours, and the tree organizes the complex set of shapes into a more comprehensible object.</description><subject>Adaptive Tree</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Binary Search Tree</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>External Contour</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Plane Curf</subject><subject>Search Tree</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540298366</isbn><isbn>3540298363</isbn><isbn>3540320970</isbn><isbn>9783540320975</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkDtPwzAUhc1Loi2d-ANZGBgC9_qmcTxWVXmpEgxljm5iGwJpHNkB0X9PqzIwneH7dHR0hLhEuEEAdYs4U6pAWWJ2JMY0y4AkaAXHYoQ5YkqU6RMx1arYM6kLyvNTMQICmWqV0bkYx_gBAFJpORJPc8P90HzbZB2sjQl3Jnnx0SaPxnZD45qah8Z3iQt-kyx_Bhs6bpOF7wb_FWLi3c5ut-_WBL4QZ47baKd_ORGvd8v14iFdPd8_LuartJeoh5QKSRqJpTJYAKsa2LHk3VylJEDuSLuiNlmGs8oqYqMrhsqSBapQmpom4urQ23OsuXWBu7qJZR-aDYdtiSpDygF33vXBizvUvdlQVt5_xhKh3D9Z_nuSfgHHAmAC</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Kergosien, Yannick L.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Adaptive Trees and Pose Identification from External Contours of Polyhedra</title><author>Kergosien, Yannick L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-3823913a27d180a7c0afa2a835772006f39f8cd4415be73ad9ba0be3e03b12dc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adaptive Tree</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Binary Search Tree</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>External Contour</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Plane Curf</topic><topic>Search Tree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kergosien, Yannick L.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kergosien, Yannick L.</au><au>Kuijper, Arjan</au><au>Florack, Luc</au><au>Fogh Olsen, Ole</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive Trees and Pose Identification from External Contours of Polyhedra</atitle><btitle>Deep Structure, Singularities, and Computer Vision</btitle><date>2005</date><risdate>2005</risdate><spage>157</spage><epage>168</epage><pages>157-168</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540298366</isbn><isbn>3540298363</isbn><eisbn>3540320970</eisbn><eisbn>9783540320975</eisbn><abstract>We first describe two stochastic algorithms which build trees in high dimensional Euclidean spaces with some adaptation to the geometry of a chosen target subset. The second one produces search trees and is used to approximately identify in real time the pose of a polyhedron from its external contour. A search tree is first grown in a space of shapes of plane curves which are a set of precomputed polygonal outlines of the polyhedron. The tree is then used to find in real time a best match to the outline of the polyhedron in the current pose. Analyzing the deformation of the curves along the tree thus built, shows progressive differentiation from a simple convex root shape to the various possible external contours, and the tree organizes the complex set of shapes into a more comprehensible object.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11577812_14</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Deep Structure, Singularities, and Computer Vision, 2005, p.157-168
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17413601
source Springer Books
subjects Adaptive Tree
Applied sciences
Artificial intelligence
Binary Search Tree
Computer science
control theory
systems
Exact sciences and technology
External Contour
Pattern recognition. Digital image processing. Computational geometry
Plane Curf
Search Tree
title Adaptive Trees and Pose Identification from External Contours of Polyhedra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20Trees%20and%20Pose%20Identification%20from%20External%20Contours%20of%20Polyhedra&rft.btitle=Deep%20Structure,%20Singularities,%20and%20Computer%20Vision&rft.au=Kergosien,%20Yannick%20L.&rft.date=2005&rft.spage=157&rft.epage=168&rft.pages=157-168&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540298366&rft.isbn_list=3540298363&rft_id=info:doi/10.1007/11577812_14&rft_dat=%3Cpascalfrancis_sprin%3E17413601%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320970&rft.eisbn_list=9783540320975&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true