Coined Quantum Walks Lift the Cospectrality of Graphs and Trees
In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | |
container_start_page | 332 |
container_title | |
container_volume | |
creator | Emms, David Severini, Simone Wilson, Richard C. Hancock, Edwin R. |
description | In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks. |
doi_str_mv | 10.1007/11585978_22 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17412982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17412982</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-abb2890107614f7aa990a6d93b5436800dea9909e57452380465a31214b95bec3</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRFuY-ANeGBgC7-uP2J4QiqAgVUJIRYzRm8ShoWkS2enQfw9VOzDd6Z7TDcfYDcI9ApgHRG21MzYX4oRNpVYgBTjrTtkEU8RESuXOjgCENfqcTfYucUbJSzaN8QcAhHFiwh6zvul8xT-21I3bDf-idh35oqlHPq48z_o4-HIM1Dbjjvc1nwcaVpFTV_Fl8D5esYua2uivjzpjny_Py-w1WbzP37KnRTIIdGNCRSGsAwSToqoNkXNAaeVkoZVMLUDl95Hz2igtpAWVapIoUBVOF76UM3Z72B0oltTWgbqyifkQmg2FXY5GoXBW_PXuDr34h7pvH_Ki79cxR8j33-X_vpO_dIZZ2A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Coined Quantum Walks Lift the Cospectrality of Graphs and Trees</title><source>Springer Books</source><creator>Emms, David ; Severini, Simone ; Wilson, Richard C. ; Hancock, Edwin R.</creator><contributor>Vemuri, Baba ; Rangarajan, Anand ; Yuille, Alan L.</contributor><creatorcontrib>Emms, David ; Severini, Simone ; Wilson, Richard C. ; Hancock, Edwin R. ; Vemuri, Baba ; Rangarajan, Anand ; Yuille, Alan L.</creatorcontrib><description>In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540302875</identifier><identifier>ISBN: 9783540302872</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320989</identifier><identifier>EISBN: 9783540320982</identifier><identifier>DOI: 10.1007/11585978_22</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Graph Match ; Pattern recognition. Digital image processing. Computational geometry ; Quantum Amplitude ; Quantum Walk ; Regular Graph ; Transition Matrix</subject><ispartof>Energy Minimization Methods in Computer Vision and Pattern Recognition, 2005, p.332-345</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11585978_22$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11585978_22$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17412982$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Vemuri, Baba</contributor><contributor>Rangarajan, Anand</contributor><contributor>Yuille, Alan L.</contributor><creatorcontrib>Emms, David</creatorcontrib><creatorcontrib>Severini, Simone</creatorcontrib><creatorcontrib>Wilson, Richard C.</creatorcontrib><creatorcontrib>Hancock, Edwin R.</creatorcontrib><title>Coined Quantum Walks Lift the Cospectrality of Graphs and Trees</title><title>Energy Minimization Methods in Computer Vision and Pattern Recognition</title><description>In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph Match</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Quantum Amplitude</subject><subject>Quantum Walk</subject><subject>Regular Graph</subject><subject>Transition Matrix</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540302875</isbn><isbn>9783540302872</isbn><isbn>3540320989</isbn><isbn>9783540320982</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAYhM2XRFuY-ANeGBgC7-uP2J4QiqAgVUJIRYzRm8ShoWkS2enQfw9VOzDd6Z7TDcfYDcI9ApgHRG21MzYX4oRNpVYgBTjrTtkEU8RESuXOjgCENfqcTfYucUbJSzaN8QcAhHFiwh6zvul8xT-21I3bDf-idh35oqlHPq48z_o4-HIM1Dbjjvc1nwcaVpFTV_Fl8D5esYua2uivjzpjny_Py-w1WbzP37KnRTIIdGNCRSGsAwSToqoNkXNAaeVkoZVMLUDl95Hz2igtpAWVapIoUBVOF76UM3Z72B0oltTWgbqyifkQmg2FXY5GoXBW_PXuDr34h7pvH_Ki79cxR8j33-X_vpO_dIZZ2A</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Emms, David</creator><creator>Severini, Simone</creator><creator>Wilson, Richard C.</creator><creator>Hancock, Edwin R.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Coined Quantum Walks Lift the Cospectrality of Graphs and Trees</title><author>Emms, David ; Severini, Simone ; Wilson, Richard C. ; Hancock, Edwin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-abb2890107614f7aa990a6d93b5436800dea9909e57452380465a31214b95bec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph Match</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Quantum Amplitude</topic><topic>Quantum Walk</topic><topic>Regular Graph</topic><topic>Transition Matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emms, David</creatorcontrib><creatorcontrib>Severini, Simone</creatorcontrib><creatorcontrib>Wilson, Richard C.</creatorcontrib><creatorcontrib>Hancock, Edwin R.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emms, David</au><au>Severini, Simone</au><au>Wilson, Richard C.</au><au>Hancock, Edwin R.</au><au>Vemuri, Baba</au><au>Rangarajan, Anand</au><au>Yuille, Alan L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Coined Quantum Walks Lift the Cospectrality of Graphs and Trees</atitle><btitle>Energy Minimization Methods in Computer Vision and Pattern Recognition</btitle><date>2005</date><risdate>2005</risdate><spage>332</spage><epage>345</epage><pages>332-345</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540302875</isbn><isbn>9783540302872</isbn><eisbn>3540320989</eisbn><eisbn>9783540320982</eisbn><abstract>In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11585978_22</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Energy Minimization Methods in Computer Vision and Pattern Recognition, 2005, p.332-345 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17412982 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Graph Match Pattern recognition. Digital image processing. Computational geometry Quantum Amplitude Quantum Walk Regular Graph Transition Matrix |
title | Coined Quantum Walks Lift the Cospectrality of Graphs and Trees |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Coined%20Quantum%20Walks%20Lift%20the%20Cospectrality%20of%20Graphs%20and%20Trees&rft.btitle=Energy%20Minimization%20Methods%20in%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Emms,%20David&rft.date=2005&rft.spage=332&rft.epage=345&rft.pages=332-345&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540302875&rft.isbn_list=9783540302872&rft_id=info:doi/10.1007/11585978_22&rft_dat=%3Cpascalfrancis_sprin%3E17412982%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320989&rft.eisbn_list=9783540320982&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |