Coined Quantum Walks Lift the Cospectrality of Graphs and Trees

In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Emms, David, Severini, Simone, Wilson, Richard C., Hancock, Edwin R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 345
container_issue
container_start_page 332
container_title
container_volume
creator Emms, David
Severini, Simone
Wilson, Richard C.
Hancock, Edwin R.
description In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks.
doi_str_mv 10.1007/11585978_22
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17412982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17412982</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-abb2890107614f7aa990a6d93b5436800dea9909e57452380465a31214b95bec3</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRFuY-ANeGBgC7-uP2J4QiqAgVUJIRYzRm8ShoWkS2enQfw9VOzDd6Z7TDcfYDcI9ApgHRG21MzYX4oRNpVYgBTjrTtkEU8RESuXOjgCENfqcTfYucUbJSzaN8QcAhHFiwh6zvul8xT-21I3bDf-idh35oqlHPq48z_o4-HIM1Dbjjvc1nwcaVpFTV_Fl8D5esYua2uivjzpjny_Py-w1WbzP37KnRTIIdGNCRSGsAwSToqoNkXNAaeVkoZVMLUDl95Hz2igtpAWVapIoUBVOF76UM3Z72B0oltTWgbqyifkQmg2FXY5GoXBW_PXuDr34h7pvH_Ki79cxR8j33-X_vpO_dIZZ2A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Coined Quantum Walks Lift the Cospectrality of Graphs and Trees</title><source>Springer Books</source><creator>Emms, David ; Severini, Simone ; Wilson, Richard C. ; Hancock, Edwin R.</creator><contributor>Vemuri, Baba ; Rangarajan, Anand ; Yuille, Alan L.</contributor><creatorcontrib>Emms, David ; Severini, Simone ; Wilson, Richard C. ; Hancock, Edwin R. ; Vemuri, Baba ; Rangarajan, Anand ; Yuille, Alan L.</creatorcontrib><description>In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540302875</identifier><identifier>ISBN: 9783540302872</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320989</identifier><identifier>EISBN: 9783540320982</identifier><identifier>DOI: 10.1007/11585978_22</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Graph Match ; Pattern recognition. Digital image processing. Computational geometry ; Quantum Amplitude ; Quantum Walk ; Regular Graph ; Transition Matrix</subject><ispartof>Energy Minimization Methods in Computer Vision and Pattern Recognition, 2005, p.332-345</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11585978_22$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11585978_22$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17412982$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Vemuri, Baba</contributor><contributor>Rangarajan, Anand</contributor><contributor>Yuille, Alan L.</contributor><creatorcontrib>Emms, David</creatorcontrib><creatorcontrib>Severini, Simone</creatorcontrib><creatorcontrib>Wilson, Richard C.</creatorcontrib><creatorcontrib>Hancock, Edwin R.</creatorcontrib><title>Coined Quantum Walks Lift the Cospectrality of Graphs and Trees</title><title>Energy Minimization Methods in Computer Vision and Pattern Recognition</title><description>In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph Match</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Quantum Amplitude</subject><subject>Quantum Walk</subject><subject>Regular Graph</subject><subject>Transition Matrix</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540302875</isbn><isbn>9783540302872</isbn><isbn>3540320989</isbn><isbn>9783540320982</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAYhM2XRFuY-ANeGBgC7-uP2J4QiqAgVUJIRYzRm8ShoWkS2enQfw9VOzDd6Z7TDcfYDcI9ApgHRG21MzYX4oRNpVYgBTjrTtkEU8RESuXOjgCENfqcTfYucUbJSzaN8QcAhHFiwh6zvul8xT-21I3bDf-idh35oqlHPq48z_o4-HIM1Dbjjvc1nwcaVpFTV_Fl8D5esYua2uivjzpjny_Py-w1WbzP37KnRTIIdGNCRSGsAwSToqoNkXNAaeVkoZVMLUDl95Hz2igtpAWVapIoUBVOF76UM3Z72B0oltTWgbqyifkQmg2FXY5GoXBW_PXuDr34h7pvH_Ki79cxR8j33-X_vpO_dIZZ2A</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Emms, David</creator><creator>Severini, Simone</creator><creator>Wilson, Richard C.</creator><creator>Hancock, Edwin R.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Coined Quantum Walks Lift the Cospectrality of Graphs and Trees</title><author>Emms, David ; Severini, Simone ; Wilson, Richard C. ; Hancock, Edwin R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-abb2890107614f7aa990a6d93b5436800dea9909e57452380465a31214b95bec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph Match</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Quantum Amplitude</topic><topic>Quantum Walk</topic><topic>Regular Graph</topic><topic>Transition Matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emms, David</creatorcontrib><creatorcontrib>Severini, Simone</creatorcontrib><creatorcontrib>Wilson, Richard C.</creatorcontrib><creatorcontrib>Hancock, Edwin R.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emms, David</au><au>Severini, Simone</au><au>Wilson, Richard C.</au><au>Hancock, Edwin R.</au><au>Vemuri, Baba</au><au>Rangarajan, Anand</au><au>Yuille, Alan L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Coined Quantum Walks Lift the Cospectrality of Graphs and Trees</atitle><btitle>Energy Minimization Methods in Computer Vision and Pattern Recognition</btitle><date>2005</date><risdate>2005</risdate><spage>332</spage><epage>345</epage><pages>332-345</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540302875</isbn><isbn>9783540302872</isbn><eisbn>3540320989</eisbn><eisbn>9783540320982</eisbn><abstract>In this paper we consider the problem of distinguishing graphs that are cospectral with respect to the standard adjacency and Laplacian matrix representations. Borrowing ideas from the field of quantum computing, we define a new matrix based on paths of the coined quantum walk. Quantum walks exhibit interference effects and their behaviour is markedly different to that of classical random walks. We show that the spectrum of this new matrix is able to distinguish many graphs which cannot be distinguished by standard spectral methods. We pay particular attention to strongly regular graphs; if a pair of strongly regular graphs share the same parameter set then there is no efficient algorithm that is proven to be able distinguish them. We have tested the method on large families of co-parametric strongly regular graphs and found it to be successful in every case. We have also tested the spectra’s performance when used to give a distance measure for inexact graph matching tasks.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11585978_22</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Energy Minimization Methods in Computer Vision and Pattern Recognition, 2005, p.332-345
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17412982
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Graph Match
Pattern recognition. Digital image processing. Computational geometry
Quantum Amplitude
Quantum Walk
Regular Graph
Transition Matrix
title Coined Quantum Walks Lift the Cospectrality of Graphs and Trees
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Coined%20Quantum%20Walks%20Lift%20the%20Cospectrality%20of%20Graphs%20and%20Trees&rft.btitle=Energy%20Minimization%20Methods%20in%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Emms,%20David&rft.date=2005&rft.spage=332&rft.epage=345&rft.pages=332-345&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540302875&rft.isbn_list=9783540302872&rft_id=info:doi/10.1007/11585978_22&rft_dat=%3Cpascalfrancis_sprin%3E17412982%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320989&rft.eisbn_list=9783540320982&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true