Molecular and Functional Diversity of Visual Pigments: Clues from the Photosensitive Opsin–Like Proteins of the Animal Model Hydra
The primary event of vision is the absorption of photons by photosensitive pigments, which triggers the transduction process producing the visual excitation. Although animal eyes and eyeless photoreceptive systems developed along several levels of molecular, morphological and functional complexity,...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 234 |
---|---|
container_issue | |
container_start_page | 225 |
container_title | |
container_volume | |
creator | Santillo, Silvia Orlando, Pierangelo De Petrocellis, Luciano Cristino, Luigia Guglielmotti, Vittorio Musio, Carlo |
description | The primary event of vision is the absorption of photons by photosensitive pigments, which triggers the transduction process producing the visual excitation. Although animal eyes and eyeless photoreceptive systems developed along several levels of molecular, morphological and functional complexity, image–forming rhodopsin family appears ubiquous along visual systems. Moreover, all Metazoa have supplementary extraocular photoreceptors that regulate their temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. To study molecular and functional differences between these pigment families, we propose the cnidarian Hydra, the first metazoan owning a nervous system, as a powerful tool of investigation. Hydra shows only an extraocular photoreception lacking classic visual structures. Our findings provide the first evidence in a phylogenetically old species of both image– and non–image–forming opsins, giving new insights on the molecular biology of Hydra photoreception and on comparative physiology of visual pigments. |
doi_str_mv | 10.1007/11565123_23 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17412832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17412832</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-ae78d49abf237b72dad1c907634e40fdeca03fc76ae19bad5ac6c0dc40f7335b3</originalsourceid><addsrcrecordid>eNpNkb9OwzAQh80_iQKdeAEvDAwB25fENVtVKCAVtQOwRo7tUNPUruwUqRsDb8Ab8iS4KgO3nHTfdz-ddAidU3JFCeHXlBZlQRlUDPZQX_ABFDkBRpgo91GPlpRmALk4QCdbwAQbMHGIegQIywTP4Rj1Y3wnqYCWyeihryffGrVuZcDSaTxeO9VZ72SLb-2HCdF2G-wb_GrjOs1m9m1pXBdv8Khdm4ib4Je4mxs8m_vOR-OSn9bwdBWt-_n8nthFYsF3xrq4zdm6Q2eXKevJa9Pih40O8gwdNbKNpv_XT9HL-O559JBNpvePo-EkWzEqukwaPtC5kHXDgNecaampEoSXkJucNNooSaBRvJSGilrqQqpSEa0S4wBFDafoYpe7klHJtgnSKRurVUgHhU1FeU7ZAFjyLndeTMi9mVDV3i9iRUm1fUP17w3wCz-keB4</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Molecular and Functional Diversity of Visual Pigments: Clues from the Photosensitive Opsin–Like Proteins of the Animal Model Hydra</title><source>Springer Books</source><creator>Santillo, Silvia ; Orlando, Pierangelo ; De Petrocellis, Luciano ; Cristino, Luigia ; Guglielmotti, Vittorio ; Musio, Carlo</creator><contributor>Musio, Carlo ; Di Maio, Vito ; Frucci, Maria ; De Gregorio, Massimo</contributor><creatorcontrib>Santillo, Silvia ; Orlando, Pierangelo ; De Petrocellis, Luciano ; Cristino, Luigia ; Guglielmotti, Vittorio ; Musio, Carlo ; Musio, Carlo ; Di Maio, Vito ; Frucci, Maria ; De Gregorio, Massimo</creatorcontrib><description>The primary event of vision is the absorption of photons by photosensitive pigments, which triggers the transduction process producing the visual excitation. Although animal eyes and eyeless photoreceptive systems developed along several levels of molecular, morphological and functional complexity, image–forming rhodopsin family appears ubiquous along visual systems. Moreover, all Metazoa have supplementary extraocular photoreceptors that regulate their temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. To study molecular and functional differences between these pigment families, we propose the cnidarian Hydra, the first metazoan owning a nervous system, as a powerful tool of investigation. Hydra shows only an extraocular photoreception lacking classic visual structures. Our findings provide the first evidence in a phylogenetically old species of both image– and non–image–forming opsins, giving new insights on the molecular biology of Hydra photoreception and on comparative physiology of visual pigments.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540292829</identifier><identifier>ISBN: 9783540292821</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540320296</identifier><identifier>EISBN: 3540320296</identifier><identifier>DOI: 10.1007/11565123_23</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Circadian Clock ; Computer science; control theory; systems ; Exact sciences and technology ; Opsin Gene ; Photosensitive Cell ; Spectral Tuning ; Visual Pigment</subject><ispartof>Brain, Vision, and Artificial Intelligence, 2005, p.225-234</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11565123_23$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11565123_23$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17412832$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Musio, Carlo</contributor><contributor>Di Maio, Vito</contributor><contributor>Frucci, Maria</contributor><contributor>De Gregorio, Massimo</contributor><creatorcontrib>Santillo, Silvia</creatorcontrib><creatorcontrib>Orlando, Pierangelo</creatorcontrib><creatorcontrib>De Petrocellis, Luciano</creatorcontrib><creatorcontrib>Cristino, Luigia</creatorcontrib><creatorcontrib>Guglielmotti, Vittorio</creatorcontrib><creatorcontrib>Musio, Carlo</creatorcontrib><title>Molecular and Functional Diversity of Visual Pigments: Clues from the Photosensitive Opsin–Like Proteins of the Animal Model Hydra</title><title>Brain, Vision, and Artificial Intelligence</title><description>The primary event of vision is the absorption of photons by photosensitive pigments, which triggers the transduction process producing the visual excitation. Although animal eyes and eyeless photoreceptive systems developed along several levels of molecular, morphological and functional complexity, image–forming rhodopsin family appears ubiquous along visual systems. Moreover, all Metazoa have supplementary extraocular photoreceptors that regulate their temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. To study molecular and functional differences between these pigment families, we propose the cnidarian Hydra, the first metazoan owning a nervous system, as a powerful tool of investigation. Hydra shows only an extraocular photoreception lacking classic visual structures. Our findings provide the first evidence in a phylogenetically old species of both image– and non–image–forming opsins, giving new insights on the molecular biology of Hydra photoreception and on comparative physiology of visual pigments.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Circadian Clock</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Opsin Gene</subject><subject>Photosensitive Cell</subject><subject>Spectral Tuning</subject><subject>Visual Pigment</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540292829</isbn><isbn>9783540292821</isbn><isbn>9783540320296</isbn><isbn>3540320296</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkb9OwzAQh80_iQKdeAEvDAwB25fENVtVKCAVtQOwRo7tUNPUruwUqRsDb8Ab8iS4KgO3nHTfdz-ddAidU3JFCeHXlBZlQRlUDPZQX_ABFDkBRpgo91GPlpRmALk4QCdbwAQbMHGIegQIywTP4Rj1Y3wnqYCWyeihryffGrVuZcDSaTxeO9VZ72SLb-2HCdF2G-wb_GrjOs1m9m1pXBdv8Khdm4ib4Je4mxs8m_vOR-OSn9bwdBWt-_n8nthFYsF3xrq4zdm6Q2eXKevJa9Pih40O8gwdNbKNpv_XT9HL-O559JBNpvePo-EkWzEqukwaPtC5kHXDgNecaampEoSXkJucNNooSaBRvJSGilrqQqpSEa0S4wBFDafoYpe7klHJtgnSKRurVUgHhU1FeU7ZAFjyLndeTMi9mVDV3i9iRUm1fUP17w3wCz-keB4</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Santillo, Silvia</creator><creator>Orlando, Pierangelo</creator><creator>De Petrocellis, Luciano</creator><creator>Cristino, Luigia</creator><creator>Guglielmotti, Vittorio</creator><creator>Musio, Carlo</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Molecular and Functional Diversity of Visual Pigments: Clues from the Photosensitive Opsin–Like Proteins of the Animal Model Hydra</title><author>Santillo, Silvia ; Orlando, Pierangelo ; De Petrocellis, Luciano ; Cristino, Luigia ; Guglielmotti, Vittorio ; Musio, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-ae78d49abf237b72dad1c907634e40fdeca03fc76ae19bad5ac6c0dc40f7335b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Circadian Clock</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Opsin Gene</topic><topic>Photosensitive Cell</topic><topic>Spectral Tuning</topic><topic>Visual Pigment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santillo, Silvia</creatorcontrib><creatorcontrib>Orlando, Pierangelo</creatorcontrib><creatorcontrib>De Petrocellis, Luciano</creatorcontrib><creatorcontrib>Cristino, Luigia</creatorcontrib><creatorcontrib>Guglielmotti, Vittorio</creatorcontrib><creatorcontrib>Musio, Carlo</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santillo, Silvia</au><au>Orlando, Pierangelo</au><au>De Petrocellis, Luciano</au><au>Cristino, Luigia</au><au>Guglielmotti, Vittorio</au><au>Musio, Carlo</au><au>Musio, Carlo</au><au>Di Maio, Vito</au><au>Frucci, Maria</au><au>De Gregorio, Massimo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Molecular and Functional Diversity of Visual Pigments: Clues from the Photosensitive Opsin–Like Proteins of the Animal Model Hydra</atitle><btitle>Brain, Vision, and Artificial Intelligence</btitle><date>2005</date><risdate>2005</risdate><spage>225</spage><epage>234</epage><pages>225-234</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540292829</isbn><isbn>9783540292821</isbn><eisbn>9783540320296</eisbn><eisbn>3540320296</eisbn><abstract>The primary event of vision is the absorption of photons by photosensitive pigments, which triggers the transduction process producing the visual excitation. Although animal eyes and eyeless photoreceptive systems developed along several levels of molecular, morphological and functional complexity, image–forming rhodopsin family appears ubiquous along visual systems. Moreover, all Metazoa have supplementary extraocular photoreceptors that regulate their temporal physiology. The investigation of novel non-visual photopigments exerting extraretinal photoreception is a challenging field in vision research. To study molecular and functional differences between these pigment families, we propose the cnidarian Hydra, the first metazoan owning a nervous system, as a powerful tool of investigation. Hydra shows only an extraocular photoreception lacking classic visual structures. Our findings provide the first evidence in a phylogenetically old species of both image– and non–image–forming opsins, giving new insights on the molecular biology of Hydra photoreception and on comparative physiology of visual pigments.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11565123_23</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Brain, Vision, and Artificial Intelligence, 2005, p.225-234 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17412832 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Circadian Clock Computer science control theory systems Exact sciences and technology Opsin Gene Photosensitive Cell Spectral Tuning Visual Pigment |
title | Molecular and Functional Diversity of Visual Pigments: Clues from the Photosensitive Opsin–Like Proteins of the Animal Model Hydra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A23%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Molecular%20and%20Functional%20Diversity%20of%20Visual%20Pigments:%20Clues%20from%20the%20Photosensitive%20Opsin%E2%80%93Like%20Proteins%20of%20the%20Animal%20Model%20Hydra&rft.btitle=Brain,%20Vision,%20and%20Artificial%20Intelligence&rft.au=Santillo,%20Silvia&rft.date=2005&rft.spage=225&rft.epage=234&rft.pages=225-234&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540292829&rft.isbn_list=9783540292821&rft_id=info:doi/10.1007/11565123_23&rft_dat=%3Cpascalfrancis_sprin%3E17412832%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540320296&rft.eisbn_list=3540320296&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |