Regularization operators for natural images based on nonlinear perception models
Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2006-01, Vol.15 (1), p.189-200 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | 1 |
container_start_page | 189 |
container_title | IEEE transactions on image processing |
container_volume | 15 |
creator | Gutierrez, J. Ferri, F.J. Malo, J. |
description | Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical. |
doi_str_mv | 10.1109/TIP.2005.860345 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17389842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556637</ieee_id><sourcerecordid>2350474091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-66993bad9b5c6288218e7deda28560d44ea1bce4f525613b05caf4bcab776cea3</originalsourceid><addsrcrecordid>eNqF0ctr3DAQB2BRWvLY5txDoZhCkpM3ej-OJaRJINAQ0rMYy-Pg4LW2kn1o_vposwsLPTQnCfTNSJofIV8YXTJG3cXj7f2SU6qWVlMh1QdyxJxkNaWSfyx7qkxtmHSH5DjnZ0qZVEwfkEOmpVBKuiNy_4BP8wCpf4Gpj2MV15hgiilXXUzVCNOcYKj6FTxhrhrI2FZFjXEc-hEhVYUHXL-VrmKLQ_5MPnUwZDzZrQvy--fV4-VNfffr-vbyx10dytVTrbVzooHWNSpobi1nFk2LLXCrNG2lRGBNQNkprjQTDVUBOtkEaIzRAUEsyPm27zrFPzPmya_6HHAYYMQ4Z2-dLj0VdUWe_VcaWkZErX0XckuN0mXQC_L9H_gc5zSW73qrjVCaq821F1sUUsw5YefXqcwx_fWM-k14voTnN-H5bXil4tuu7dyssN37XVoFnO4A5ABDl2AMfd47I6yzkhf3det6RNwfq_J4YcQrI9yqiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867356259</pqid></control><display><type>article</type><title>Regularization operators for natural images based on nonlinear perception models</title><source>IEEE Electronic Library (IEL)</source><creator>Gutierrez, J. ; Ferri, F.J. ; Malo, J.</creator><creatorcontrib>Gutierrez, J. ; Ferri, F.J. ; Malo, J.</creatorcontrib><description>Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2005.860345</identifier><identifier>PMID: 16435549</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive noise ; Algorithms ; Applied sciences ; Artificial Intelligence ; Biological ; Biological system modeling ; Cluster Analysis ; Computer science; control theory; systems ; Computer Simulation ; Construction ; Density ; Early vision models ; Exact sciences and technology ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image restoration ; Independent component analysis ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Laboratories ; Machine vision ; Mathematical models ; Models, Statistical ; natural image statistics ; Nonlinear distortion ; Nonlinear Dynamics ; Numerical Analysis, Computer-Assisted ; Operators ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Pixel ; Power system modeling ; Regularization ; Signal processing ; Signal Processing, Computer-Assisted ; Statistical analysis ; Telecommunications and information theory ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2006-01, Vol.15 (1), p.189-200</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-66993bad9b5c6288218e7deda28560d44ea1bce4f525613b05caf4bcab776cea3</citedby><cites>FETCH-LOGICAL-c435t-66993bad9b5c6288218e7deda28560d44ea1bce4f525613b05caf4bcab776cea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556637$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556637$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17389842$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16435549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutierrez, J.</creatorcontrib><creatorcontrib>Ferri, F.J.</creatorcontrib><creatorcontrib>Malo, J.</creatorcontrib><title>Regularization operators for natural images based on nonlinear perception models</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical.</description><subject>Additive noise</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biological</subject><subject>Biological system modeling</subject><subject>Cluster Analysis</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Construction</subject><subject>Density</subject><subject>Early vision models</subject><subject>Exact sciences and technology</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Independent component analysis</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Laboratories</subject><subject>Machine vision</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>natural image statistics</subject><subject>Nonlinear distortion</subject><subject>Nonlinear Dynamics</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Operators</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixel</subject><subject>Power system modeling</subject><subject>Regularization</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Statistical analysis</subject><subject>Telecommunications and information theory</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0ctr3DAQB2BRWvLY5txDoZhCkpM3ej-OJaRJINAQ0rMYy-Pg4LW2kn1o_vposwsLPTQnCfTNSJofIV8YXTJG3cXj7f2SU6qWVlMh1QdyxJxkNaWSfyx7qkxtmHSH5DjnZ0qZVEwfkEOmpVBKuiNy_4BP8wCpf4Gpj2MV15hgiilXXUzVCNOcYKj6FTxhrhrI2FZFjXEc-hEhVYUHXL-VrmKLQ_5MPnUwZDzZrQvy--fV4-VNfffr-vbyx10dytVTrbVzooHWNSpobi1nFk2LLXCrNG2lRGBNQNkprjQTDVUBOtkEaIzRAUEsyPm27zrFPzPmya_6HHAYYMQ4Z2-dLj0VdUWe_VcaWkZErX0XckuN0mXQC_L9H_gc5zSW73qrjVCaq821F1sUUsw5YefXqcwx_fWM-k14voTnN-H5bXil4tuu7dyssN37XVoFnO4A5ABDl2AMfd47I6yzkhf3det6RNwfq_J4YcQrI9yqiQ</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Gutierrez, J.</creator><creator>Ferri, F.J.</creator><creator>Malo, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200601</creationdate><title>Regularization operators for natural images based on nonlinear perception models</title><author>Gutierrez, J. ; Ferri, F.J. ; Malo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-66993bad9b5c6288218e7deda28560d44ea1bce4f525613b05caf4bcab776cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Additive noise</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biological</topic><topic>Biological system modeling</topic><topic>Cluster Analysis</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Construction</topic><topic>Density</topic><topic>Early vision models</topic><topic>Exact sciences and technology</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Independent component analysis</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Laboratories</topic><topic>Machine vision</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>natural image statistics</topic><topic>Nonlinear distortion</topic><topic>Nonlinear Dynamics</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Operators</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixel</topic><topic>Power system modeling</topic><topic>Regularization</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Statistical analysis</topic><topic>Telecommunications and information theory</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutierrez, J.</creatorcontrib><creatorcontrib>Ferri, F.J.</creatorcontrib><creatorcontrib>Malo, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gutierrez, J.</au><au>Ferri, F.J.</au><au>Malo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularization operators for natural images based on nonlinear perception models</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-01</date><risdate>2006</risdate><volume>15</volume><issue>1</issue><spage>189</spage><epage>200</epage><pages>189-200</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16435549</pmid><doi>10.1109/TIP.2005.860345</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2006-01, Vol.15 (1), p.189-200 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pascalfrancis_primary_17389842 |
source | IEEE Electronic Library (IEL) |
subjects | Additive noise Algorithms Applied sciences Artificial Intelligence Biological Biological system modeling Cluster Analysis Computer science control theory systems Computer Simulation Construction Density Early vision models Exact sciences and technology Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image restoration Independent component analysis Information Storage and Retrieval - methods Information, signal and communications theory Laboratories Machine vision Mathematical models Models, Statistical natural image statistics Nonlinear distortion Nonlinear Dynamics Numerical Analysis, Computer-Assisted Operators Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Pixel Power system modeling Regularization Signal processing Signal Processing, Computer-Assisted Statistical analysis Telecommunications and information theory Wavelet transforms |
title | Regularization operators for natural images based on nonlinear perception models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularization%20operators%20for%20natural%20images%20based%20on%20nonlinear%20perception%20models&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gutierrez,%20J.&rft.date=2006-01&rft.volume=15&rft.issue=1&rft.spage=189&rft.epage=200&rft.pages=189-200&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2005.860345&rft_dat=%3Cproquest_RIE%3E2350474091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867356259&rft_id=info:pmid/16435549&rft_ieee_id=1556637&rfr_iscdi=true |