Regularization operators for natural images based on nonlinear perception models

Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2006-01, Vol.15 (1), p.189-200
Hauptverfasser: Gutierrez, J., Ferri, F.J., Malo, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 200
container_issue 1
container_start_page 189
container_title IEEE transactions on image processing
container_volume 15
creator Gutierrez, J.
Ferri, F.J.
Malo, J.
description Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical.
doi_str_mv 10.1109/TIP.2005.860345
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17389842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556637</ieee_id><sourcerecordid>2350474091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-66993bad9b5c6288218e7deda28560d44ea1bce4f525613b05caf4bcab776cea3</originalsourceid><addsrcrecordid>eNqF0ctr3DAQB2BRWvLY5txDoZhCkpM3ej-OJaRJINAQ0rMYy-Pg4LW2kn1o_vposwsLPTQnCfTNSJofIV8YXTJG3cXj7f2SU6qWVlMh1QdyxJxkNaWSfyx7qkxtmHSH5DjnZ0qZVEwfkEOmpVBKuiNy_4BP8wCpf4Gpj2MV15hgiilXXUzVCNOcYKj6FTxhrhrI2FZFjXEc-hEhVYUHXL-VrmKLQ_5MPnUwZDzZrQvy--fV4-VNfffr-vbyx10dytVTrbVzooHWNSpobi1nFk2LLXCrNG2lRGBNQNkprjQTDVUBOtkEaIzRAUEsyPm27zrFPzPmya_6HHAYYMQ4Z2-dLj0VdUWe_VcaWkZErX0XckuN0mXQC_L9H_gc5zSW73qrjVCaq821F1sUUsw5YefXqcwx_fWM-k14voTnN-H5bXil4tuu7dyssN37XVoFnO4A5ABDl2AMfd47I6yzkhf3det6RNwfq_J4YcQrI9yqiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867356259</pqid></control><display><type>article</type><title>Regularization operators for natural images based on nonlinear perception models</title><source>IEEE Electronic Library (IEL)</source><creator>Gutierrez, J. ; Ferri, F.J. ; Malo, J.</creator><creatorcontrib>Gutierrez, J. ; Ferri, F.J. ; Malo, J.</creatorcontrib><description>Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2005.860345</identifier><identifier>PMID: 16435549</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive noise ; Algorithms ; Applied sciences ; Artificial Intelligence ; Biological ; Biological system modeling ; Cluster Analysis ; Computer science; control theory; systems ; Computer Simulation ; Construction ; Density ; Early vision models ; Exact sciences and technology ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image restoration ; Independent component analysis ; Information Storage and Retrieval - methods ; Information, signal and communications theory ; Laboratories ; Machine vision ; Mathematical models ; Models, Statistical ; natural image statistics ; Nonlinear distortion ; Nonlinear Dynamics ; Numerical Analysis, Computer-Assisted ; Operators ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Pixel ; Power system modeling ; Regularization ; Signal processing ; Signal Processing, Computer-Assisted ; Statistical analysis ; Telecommunications and information theory ; Wavelet transforms</subject><ispartof>IEEE transactions on image processing, 2006-01, Vol.15 (1), p.189-200</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-66993bad9b5c6288218e7deda28560d44ea1bce4f525613b05caf4bcab776cea3</citedby><cites>FETCH-LOGICAL-c435t-66993bad9b5c6288218e7deda28560d44ea1bce4f525613b05caf4bcab776cea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556637$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,4010,27904,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556637$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17389842$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16435549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutierrez, J.</creatorcontrib><creatorcontrib>Ferri, F.J.</creatorcontrib><creatorcontrib>Malo, J.</creatorcontrib><title>Regularization operators for natural images based on nonlinear perception models</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical.</description><subject>Additive noise</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Biological</subject><subject>Biological system modeling</subject><subject>Cluster Analysis</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Construction</subject><subject>Density</subject><subject>Early vision models</subject><subject>Exact sciences and technology</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image restoration</subject><subject>Independent component analysis</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information, signal and communications theory</subject><subject>Laboratories</subject><subject>Machine vision</subject><subject>Mathematical models</subject><subject>Models, Statistical</subject><subject>natural image statistics</subject><subject>Nonlinear distortion</subject><subject>Nonlinear Dynamics</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Operators</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixel</subject><subject>Power system modeling</subject><subject>Regularization</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Statistical analysis</subject><subject>Telecommunications and information theory</subject><subject>Wavelet transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0ctr3DAQB2BRWvLY5txDoZhCkpM3ej-OJaRJINAQ0rMYy-Pg4LW2kn1o_vposwsLPTQnCfTNSJofIV8YXTJG3cXj7f2SU6qWVlMh1QdyxJxkNaWSfyx7qkxtmHSH5DjnZ0qZVEwfkEOmpVBKuiNy_4BP8wCpf4Gpj2MV15hgiilXXUzVCNOcYKj6FTxhrhrI2FZFjXEc-hEhVYUHXL-VrmKLQ_5MPnUwZDzZrQvy--fV4-VNfffr-vbyx10dytVTrbVzooHWNSpobi1nFk2LLXCrNG2lRGBNQNkprjQTDVUBOtkEaIzRAUEsyPm27zrFPzPmya_6HHAYYMQ4Z2-dLj0VdUWe_VcaWkZErX0XckuN0mXQC_L9H_gc5zSW73qrjVCaq821F1sUUsw5YefXqcwx_fWM-k14voTnN-H5bXil4tuu7dyssN37XVoFnO4A5ABDl2AMfd47I6yzkhf3det6RNwfq_J4YcQrI9yqiQ</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Gutierrez, J.</creator><creator>Ferri, F.J.</creator><creator>Malo, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200601</creationdate><title>Regularization operators for natural images based on nonlinear perception models</title><author>Gutierrez, J. ; Ferri, F.J. ; Malo, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-66993bad9b5c6288218e7deda28560d44ea1bce4f525613b05caf4bcab776cea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Additive noise</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Biological</topic><topic>Biological system modeling</topic><topic>Cluster Analysis</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Construction</topic><topic>Density</topic><topic>Early vision models</topic><topic>Exact sciences and technology</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image restoration</topic><topic>Independent component analysis</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information, signal and communications theory</topic><topic>Laboratories</topic><topic>Machine vision</topic><topic>Mathematical models</topic><topic>Models, Statistical</topic><topic>natural image statistics</topic><topic>Nonlinear distortion</topic><topic>Nonlinear Dynamics</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Operators</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixel</topic><topic>Power system modeling</topic><topic>Regularization</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Statistical analysis</topic><topic>Telecommunications and information theory</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutierrez, J.</creatorcontrib><creatorcontrib>Ferri, F.J.</creatorcontrib><creatorcontrib>Malo, J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gutierrez, J.</au><au>Ferri, F.J.</au><au>Malo, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularization operators for natural images based on nonlinear perception models</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-01</date><risdate>2006</risdate><volume>15</volume><issue>1</issue><spage>189</spage><epage>200</epage><pages>189-200</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Image restoration requires some a priori knowledge of the solution. Some of the conventional regularization techniques are based on the estimation of the power spectrum density. Simple statistical models for spectral estimation just take into account second-order relations between the pixels of the image. However, natural images exhibit additional features, such as particular relationships between local Fourier or wavelet transform coefficients. Biological visual systems have evolved to capture these relations. We propose the use of this biological behavior to build regularization operators as an alternative to simple statistical models. The results suggest that if the penalty operator takes these additional features in natural images into account, it will be more robust and the choice of the regularization parameter is less critical.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16435549</pmid><doi>10.1109/TIP.2005.860345</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2006-01, Vol.15 (1), p.189-200
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_17389842
source IEEE Electronic Library (IEL)
subjects Additive noise
Algorithms
Applied sciences
Artificial Intelligence
Biological
Biological system modeling
Cluster Analysis
Computer science
control theory
systems
Computer Simulation
Construction
Density
Early vision models
Exact sciences and technology
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image restoration
Independent component analysis
Information Storage and Retrieval - methods
Information, signal and communications theory
Laboratories
Machine vision
Mathematical models
Models, Statistical
natural image statistics
Nonlinear distortion
Nonlinear Dynamics
Numerical Analysis, Computer-Assisted
Operators
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Pixel
Power system modeling
Regularization
Signal processing
Signal Processing, Computer-Assisted
Statistical analysis
Telecommunications and information theory
Wavelet transforms
title Regularization operators for natural images based on nonlinear perception models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A33%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularization%20operators%20for%20natural%20images%20based%20on%20nonlinear%20perception%20models&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Gutierrez,%20J.&rft.date=2006-01&rft.volume=15&rft.issue=1&rft.spage=189&rft.epage=200&rft.pages=189-200&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2005.860345&rft_dat=%3Cproquest_RIE%3E2350474091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867356259&rft_id=info:pmid/16435549&rft_ieee_id=1556637&rfr_iscdi=true