A range/domain approximation error-based approach for fractal image compression

Fractals can be an effective approach for several applications other than image coding and transmission: database indexing, texture mapping, and even pattern recognition problems such as writer authentication. However, fractal-based algorithms are strongly asymmetric because, in spite of the lineari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2006-01, Vol.15 (1), p.89-97
Hauptverfasser: Distasi, R., Nappi, M., Riccio, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 89
container_title IEEE transactions on image processing
container_volume 15
creator Distasi, R.
Nappi, M.
Riccio, D.
description Fractals can be an effective approach for several applications other than image coding and transmission: database indexing, texture mapping, and even pattern recognition problems such as writer authentication. However, fractal-based algorithms are strongly asymmetric because, in spite of the linearity of the decoding phase, the coding process is much more time consuming. Many different solutions have been proposed for this problem, but there is not yet a standard for fractal coding. This paper proposes a method to reduce the complexity of the image coding phase by classifying the blocks according to an approximation error measure. It is formally shown that postponing range/spl bsol/slash domain comparisons with respect to a preset block, it is possible to reduce drastically the amount of operations needed to encode each range. The proposed method has been compared with three other fractal coding methods, showing under which circumstances it performs better in terms of both bit rate and/or computing time.
doi_str_mv 10.1109/TIP.2005.860334
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pascalfrancis_primary_17389832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1556627</ieee_id><sourcerecordid>70714043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-a549a89d00a5cca38a0f26e92807f76846562a886fa76cdbf4a9a534610fa12b3</originalsourceid><addsrcrecordid>eNqF0ctrGzEQB2BRWppHe86hEJZASi9rj97S0YQ-AoH0kJ7FWCslG3ZXrmRD899XZg2GHtKTBPpmpNGPkAsKC0rBLh9ufy4YgFwYBZyLN-SUWkFbAMHe1j1I3Woq7Ak5K-UZgApJ1XtyQpXgUnJ7Su5XTcbpMSy7NGI_NbjZ5PSnH3Hbp6kJOafcrrGEbj5B_9TElJuY0W9xaCp8DI1P4yaHUmrJB_Iu4lDCx8N6Tn59-_pw86O9u_9-e7O6a70Etm1RCovGdgAovUduECJTwTIDOmplhJKKoTEqola-W0eBFiUXikJEytb8nHye-9ZH_d6FsnVjX3wYBpxC2hWnoc4Ngv8X1huNMIJV-OVVSJWmEsByUenVP_Q57fJU53VGaS4VN7Si5Yx8TqXkEN0m1-_KL46C24fnanhuH56bw6sVl4e2u_UYuqM_pFXB9QFg8TjUECbfl6PT3FjD96N8ml0fQjgeS6kU0_wvoOqoxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867356381</pqid></control><display><type>article</type><title>A range/domain approximation error-based approach for fractal image compression</title><source>IEEE Electronic Library (IEL)</source><creator>Distasi, R. ; Nappi, M. ; Riccio, D.</creator><creatorcontrib>Distasi, R. ; Nappi, M. ; Riccio, D.</creatorcontrib><description>Fractals can be an effective approach for several applications other than image coding and transmission: database indexing, texture mapping, and even pattern recognition problems such as writer authentication. However, fractal-based algorithms are strongly asymmetric because, in spite of the linearity of the decoding phase, the coding process is much more time consuming. Many different solutions have been proposed for this problem, but there is not yet a standard for fractal coding. This paper proposes a method to reduce the complexity of the image coding phase by classifying the blocks according to an approximation error measure. It is formally shown that postponing range/spl bsol/slash domain comparisons with respect to a preset block, it is possible to reduce drastically the amount of operations needed to encode each range. The proposed method has been compared with three other fractal coding methods, showing under which circumstances it performs better in terms of both bit rate and/or computing time.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2005.860334</identifier><identifier>PMID: 16435539</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Approximation ; Approximation error ; Authentication ; Classification ; Coding ; Coding, codes ; Computer Graphics ; Computer Simulation ; Data Compression - methods ; Data Interpretation, Statistical ; Decoding ; Exact sciences and technology ; feature vector ; Fractal analysis ; fractal image compression ; Fractals ; Image coding ; Image databases ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Indexing ; Information, signal and communications theory ; Linearity ; Mathematical analysis ; Models, Statistical ; Numerical Analysis, Computer-Assisted ; Pattern recognition ; Phase measurement ; Signal and communications theory ; Signal processing ; Signal Processing, Computer-Assisted ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 2006-01, Vol.15 (1), p.89-97</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-a549a89d00a5cca38a0f26e92807f76846562a886fa76cdbf4a9a534610fa12b3</citedby><cites>FETCH-LOGICAL-c502t-a549a89d00a5cca38a0f26e92807f76846562a886fa76cdbf4a9a534610fa12b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1556627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1556627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17389832$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16435539$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Distasi, R.</creatorcontrib><creatorcontrib>Nappi, M.</creatorcontrib><creatorcontrib>Riccio, D.</creatorcontrib><title>A range/domain approximation error-based approach for fractal image compression</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Fractals can be an effective approach for several applications other than image coding and transmission: database indexing, texture mapping, and even pattern recognition problems such as writer authentication. However, fractal-based algorithms are strongly asymmetric because, in spite of the linearity of the decoding phase, the coding process is much more time consuming. Many different solutions have been proposed for this problem, but there is not yet a standard for fractal coding. This paper proposes a method to reduce the complexity of the image coding phase by classifying the blocks according to an approximation error measure. It is formally shown that postponing range/spl bsol/slash domain comparisons with respect to a preset block, it is possible to reduce drastically the amount of operations needed to encode each range. The proposed method has been compared with three other fractal coding methods, showing under which circumstances it performs better in terms of both bit rate and/or computing time.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Approximation error</subject><subject>Authentication</subject><subject>Classification</subject><subject>Coding</subject><subject>Coding, codes</subject><subject>Computer Graphics</subject><subject>Computer Simulation</subject><subject>Data Compression - methods</subject><subject>Data Interpretation, Statistical</subject><subject>Decoding</subject><subject>Exact sciences and technology</subject><subject>feature vector</subject><subject>Fractal analysis</subject><subject>fractal image compression</subject><subject>Fractals</subject><subject>Image coding</subject><subject>Image databases</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Indexing</subject><subject>Information, signal and communications theory</subject><subject>Linearity</subject><subject>Mathematical analysis</subject><subject>Models, Statistical</subject><subject>Numerical Analysis, Computer-Assisted</subject><subject>Pattern recognition</subject><subject>Phase measurement</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0ctrGzEQB2BRWppHe86hEJZASi9rj97S0YQ-AoH0kJ7FWCslG3ZXrmRD899XZg2GHtKTBPpmpNGPkAsKC0rBLh9ufy4YgFwYBZyLN-SUWkFbAMHe1j1I3Woq7Ak5K-UZgApJ1XtyQpXgUnJ7Su5XTcbpMSy7NGI_NbjZ5PSnH3Hbp6kJOafcrrGEbj5B_9TElJuY0W9xaCp8DI1P4yaHUmrJB_Iu4lDCx8N6Tn59-_pw86O9u_9-e7O6a70Etm1RCovGdgAovUduECJTwTIDOmplhJKKoTEqola-W0eBFiUXikJEytb8nHye-9ZH_d6FsnVjX3wYBpxC2hWnoc4Ngv8X1huNMIJV-OVVSJWmEsByUenVP_Q57fJU53VGaS4VN7Si5Yx8TqXkEN0m1-_KL46C24fnanhuH56bw6sVl4e2u_UYuqM_pFXB9QFg8TjUECbfl6PT3FjD96N8ml0fQjgeS6kU0_wvoOqoxQ</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>Distasi, R.</creator><creator>Nappi, M.</creator><creator>Riccio, D.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>200601</creationdate><title>A range/domain approximation error-based approach for fractal image compression</title><author>Distasi, R. ; Nappi, M. ; Riccio, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-a549a89d00a5cca38a0f26e92807f76846562a886fa76cdbf4a9a534610fa12b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Approximation error</topic><topic>Authentication</topic><topic>Classification</topic><topic>Coding</topic><topic>Coding, codes</topic><topic>Computer Graphics</topic><topic>Computer Simulation</topic><topic>Data Compression - methods</topic><topic>Data Interpretation, Statistical</topic><topic>Decoding</topic><topic>Exact sciences and technology</topic><topic>feature vector</topic><topic>Fractal analysis</topic><topic>fractal image compression</topic><topic>Fractals</topic><topic>Image coding</topic><topic>Image databases</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Indexing</topic><topic>Information, signal and communications theory</topic><topic>Linearity</topic><topic>Mathematical analysis</topic><topic>Models, Statistical</topic><topic>Numerical Analysis, Computer-Assisted</topic><topic>Pattern recognition</topic><topic>Phase measurement</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Distasi, R.</creatorcontrib><creatorcontrib>Nappi, M.</creatorcontrib><creatorcontrib>Riccio, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Distasi, R.</au><au>Nappi, M.</au><au>Riccio, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A range/domain approximation error-based approach for fractal image compression</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2006-01</date><risdate>2006</risdate><volume>15</volume><issue>1</issue><spage>89</spage><epage>97</epage><pages>89-97</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Fractals can be an effective approach for several applications other than image coding and transmission: database indexing, texture mapping, and even pattern recognition problems such as writer authentication. However, fractal-based algorithms are strongly asymmetric because, in spite of the linearity of the decoding phase, the coding process is much more time consuming. Many different solutions have been proposed for this problem, but there is not yet a standard for fractal coding. This paper proposes a method to reduce the complexity of the image coding phase by classifying the blocks according to an approximation error measure. It is formally shown that postponing range/spl bsol/slash domain comparisons with respect to a preset block, it is possible to reduce drastically the amount of operations needed to encode each range. The proposed method has been compared with three other fractal coding methods, showing under which circumstances it performs better in terms of both bit rate and/or computing time.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>16435539</pmid><doi>10.1109/TIP.2005.860334</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2006-01, Vol.15 (1), p.89-97
issn 1057-7149
1941-0042
language eng
recordid cdi_pascalfrancis_primary_17389832
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Approximation
Approximation error
Authentication
Classification
Coding
Coding, codes
Computer Graphics
Computer Simulation
Data Compression - methods
Data Interpretation, Statistical
Decoding
Exact sciences and technology
feature vector
Fractal analysis
fractal image compression
Fractals
Image coding
Image databases
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Indexing
Information, signal and communications theory
Linearity
Mathematical analysis
Models, Statistical
Numerical Analysis, Computer-Assisted
Pattern recognition
Phase measurement
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Studies
Telecommunications and information theory
title A range/domain approximation error-based approach for fractal image compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20range/domain%20approximation%20error-based%20approach%20for%20fractal%20image%20compression&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Distasi,%20R.&rft.date=2006-01&rft.volume=15&rft.issue=1&rft.spage=89&rft.epage=97&rft.pages=89-97&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2005.860334&rft_dat=%3Cproquest_RIE%3E70714043%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867356381&rft_id=info:pmid/16435539&rft_ieee_id=1556627&rfr_iscdi=true