A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification

The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dafonte, Carlos, Rodríguez, Alejandra, Arcay, Bernardino, Carricajo, Iciar, Manteiga, Minia
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue
container_start_page 566
container_title
container_volume
creator Dafonte, Carlos
Rodríguez, Alejandra
Arcay, Bernardino
Carricajo, Iciar
Manteiga, Minia
description The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spectra from public catalogues using the standard MK system. At present, we already dispose of a hybrid system that carries out this task, applying the most appropriate classification method to each spectrum with a success rate that is similar to that of human experts.
doi_str_mv 10.1007/11578079_59
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17372749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17372749</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-ca24bc90a6425c5ba258c6743e3b8c8f54c4649c760a73e4745ca877803e89ff3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQNC-JqvTED_jCAYmAn7F9LBEvUZVD23PkujaYpkmwXaT-Pa6KEHtZaWdmNTMAXGJ0ixESdxhzIZFQNVdHYKSEpJwhSggj6hgMcIlxQSlTJ38YUZIjcgoGiCJSKMHoORjF-InyUKxKSgZgPYZVt-l10Ml_WzhL29UOdg6-3s9u4Hg6hbpd5WtGY_JGN7BqtjHZ4Nt3OLfmo_VfWxuh6wJctDol267sXmCbRodM1jF6l4XJd-0FOHO6iXb0u4dg8fgwr56LydvTSzWeFD3hZSqMJmxpFNIlI9zwpSZcmjK7t3QpjXScGVYyZUSJtKCWCcaNliJ3Q61UztEhuDr87XXMll3QrfGx7oPf6LCrsaCCCKYy7_rAi_0-jw31suvWscao3hde_yuc_gBCumzJ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification</title><source>Springer Books</source><creator>Dafonte, Carlos ; Rodríguez, Alejandra ; Arcay, Bernardino ; Carricajo, Iciar ; Manteiga, Minia</creator><contributor>Sanfeliu, Alberto ; Cortés, Manuel Lazo</contributor><creatorcontrib>Dafonte, Carlos ; Rodríguez, Alejandra ; Arcay, Bernardino ; Carricajo, Iciar ; Manteiga, Minia ; Sanfeliu, Alberto ; Cortés, Manuel Lazo</creatorcontrib><description>The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spectra from public catalogues using the standard MK system. At present, we already dispose of a hybrid system that carries out this task, applying the most appropriate classification method to each spectrum with a success rate that is similar to that of human experts.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540298502</identifier><identifier>ISBN: 3540298509</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540322429</identifier><identifier>EISBN: 3540322426</identifier><identifier>DOI: 10.1007/11578079_59</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Expert System ; Human Expert ; Input Pattern ; Pattern recognition. Digital image processing. Computational geometry ; Spectral Parameter ; Spectral Type</subject><ispartof>Lecture notes in computer science, 2005, p.566-577</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11578079_59$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11578079_59$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17372749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sanfeliu, Alberto</contributor><contributor>Cortés, Manuel Lazo</contributor><creatorcontrib>Dafonte, Carlos</creatorcontrib><creatorcontrib>Rodríguez, Alejandra</creatorcontrib><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Carricajo, Iciar</creatorcontrib><creatorcontrib>Manteiga, Minia</creatorcontrib><title>A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification</title><title>Lecture notes in computer science</title><description>The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spectra from public catalogues using the standard MK system. At present, we already dispose of a hybrid system that carries out this task, applying the most appropriate classification method to each spectrum with a success rate that is similar to that of human experts.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Expert System</subject><subject>Human Expert</subject><subject>Input Pattern</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Spectral Parameter</subject><subject>Spectral Type</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540298502</isbn><isbn>3540298509</isbn><isbn>9783540322429</isbn><isbn>3540322426</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNUMtOwzAQNC-JqvTED_jCAYmAn7F9LBEvUZVD23PkujaYpkmwXaT-Pa6KEHtZaWdmNTMAXGJ0ixESdxhzIZFQNVdHYKSEpJwhSggj6hgMcIlxQSlTJ38YUZIjcgoGiCJSKMHoORjF-InyUKxKSgZgPYZVt-l10Ml_WzhL29UOdg6-3s9u4Hg6hbpd5WtGY_JGN7BqtjHZ4Nt3OLfmo_VfWxuh6wJctDol267sXmCbRodM1jF6l4XJd-0FOHO6iXb0u4dg8fgwr56LydvTSzWeFD3hZSqMJmxpFNIlI9zwpSZcmjK7t3QpjXScGVYyZUSJtKCWCcaNliJ3Q61UztEhuDr87XXMll3QrfGx7oPf6LCrsaCCCKYy7_rAi_0-jw31suvWscao3hde_yuc_gBCumzJ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Dafonte, Carlos</creator><creator>Rodríguez, Alejandra</creator><creator>Arcay, Bernardino</creator><creator>Carricajo, Iciar</creator><creator>Manteiga, Minia</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification</title><author>Dafonte, Carlos ; Rodríguez, Alejandra ; Arcay, Bernardino ; Carricajo, Iciar ; Manteiga, Minia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-ca24bc90a6425c5ba258c6743e3b8c8f54c4649c760a73e4745ca877803e89ff3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Expert System</topic><topic>Human Expert</topic><topic>Input Pattern</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Spectral Parameter</topic><topic>Spectral Type</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dafonte, Carlos</creatorcontrib><creatorcontrib>Rodríguez, Alejandra</creatorcontrib><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Carricajo, Iciar</creatorcontrib><creatorcontrib>Manteiga, Minia</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dafonte, Carlos</au><au>Rodríguez, Alejandra</au><au>Arcay, Bernardino</au><au>Carricajo, Iciar</au><au>Manteiga, Minia</au><au>Sanfeliu, Alberto</au><au>Cortés, Manuel Lazo</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>566</spage><epage>577</epage><pages>566-577</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540298502</isbn><isbn>3540298509</isbn><eisbn>9783540322429</eisbn><eisbn>3540322426</eisbn><abstract>The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spectra from public catalogues using the standard MK system. At present, we already dispose of a hybrid system that carries out this task, applying the most appropriate classification method to each spectrum with a success rate that is similar to that of human experts.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11578079_59</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.566-577
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17372749
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Expert System
Human Expert
Input Pattern
Pattern recognition. Digital image processing. Computational geometry
Spectral Parameter
Spectral Type
title A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Comparative%20Study%20of%20KBS,%20ANN%20and%20Statistical%20Clustering%20Techniques%20for%20Unattended%20Stellar%20Classification&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Dafonte,%20Carlos&rft.date=2005&rft.spage=566&rft.epage=577&rft.pages=566-577&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540298502&rft.isbn_list=3540298509&rft_id=info:doi/10.1007/11578079_59&rft_dat=%3Cpascalfrancis_sprin%3E17372749%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540322429&rft.eisbn_list=3540322426&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true