A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification
The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spe...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 577 |
---|---|
container_issue | |
container_start_page | 566 |
container_title | |
container_volume | |
creator | Dafonte, Carlos Rodríguez, Alejandra Arcay, Bernardino Carricajo, Iciar Manteiga, Minia |
description | The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spectra from public catalogues using the standard MK system. At present, we already dispose of a hybrid system that carries out this task, applying the most appropriate classification method to each spectrum with a success rate that is similar to that of human experts. |
doi_str_mv | 10.1007/11578079_59 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17372749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17372749</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-ca24bc90a6425c5ba258c6743e3b8c8f54c4649c760a73e4745ca877803e89ff3</originalsourceid><addsrcrecordid>eNpNUMtOwzAQNC-JqvTED_jCAYmAn7F9LBEvUZVD23PkujaYpkmwXaT-Pa6KEHtZaWdmNTMAXGJ0ixESdxhzIZFQNVdHYKSEpJwhSggj6hgMcIlxQSlTJ38YUZIjcgoGiCJSKMHoORjF-InyUKxKSgZgPYZVt-l10Ml_WzhL29UOdg6-3s9u4Hg6hbpd5WtGY_JGN7BqtjHZ4Nt3OLfmo_VfWxuh6wJctDol267sXmCbRodM1jF6l4XJd-0FOHO6iXb0u4dg8fgwr56LydvTSzWeFD3hZSqMJmxpFNIlI9zwpSZcmjK7t3QpjXScGVYyZUSJtKCWCcaNliJ3Q61UztEhuDr87XXMll3QrfGx7oPf6LCrsaCCCKYy7_rAi_0-jw31suvWscao3hde_yuc_gBCumzJ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification</title><source>Springer Books</source><creator>Dafonte, Carlos ; Rodríguez, Alejandra ; Arcay, Bernardino ; Carricajo, Iciar ; Manteiga, Minia</creator><contributor>Sanfeliu, Alberto ; Cortés, Manuel Lazo</contributor><creatorcontrib>Dafonte, Carlos ; Rodríguez, Alejandra ; Arcay, Bernardino ; Carricajo, Iciar ; Manteiga, Minia ; Sanfeliu, Alberto ; Cortés, Manuel Lazo</creatorcontrib><description>The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spectra from public catalogues using the standard MK system. At present, we already dispose of a hybrid system that carries out this task, applying the most appropriate classification method to each spectrum with a success rate that is similar to that of human experts.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540298502</identifier><identifier>ISBN: 3540298509</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540322429</identifier><identifier>EISBN: 3540322426</identifier><identifier>DOI: 10.1007/11578079_59</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Expert System ; Human Expert ; Input Pattern ; Pattern recognition. Digital image processing. Computational geometry ; Spectral Parameter ; Spectral Type</subject><ispartof>Lecture notes in computer science, 2005, p.566-577</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11578079_59$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11578079_59$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17372749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sanfeliu, Alberto</contributor><contributor>Cortés, Manuel Lazo</contributor><creatorcontrib>Dafonte, Carlos</creatorcontrib><creatorcontrib>Rodríguez, Alejandra</creatorcontrib><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Carricajo, Iciar</creatorcontrib><creatorcontrib>Manteiga, Minia</creatorcontrib><title>A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification</title><title>Lecture notes in computer science</title><description>The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spectra from public catalogues using the standard MK system. At present, we already dispose of a hybrid system that carries out this task, applying the most appropriate classification method to each spectrum with a success rate that is similar to that of human experts.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Expert System</subject><subject>Human Expert</subject><subject>Input Pattern</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Spectral Parameter</subject><subject>Spectral Type</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540298502</isbn><isbn>3540298509</isbn><isbn>9783540322429</isbn><isbn>3540322426</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNUMtOwzAQNC-JqvTED_jCAYmAn7F9LBEvUZVD23PkujaYpkmwXaT-Pa6KEHtZaWdmNTMAXGJ0ixESdxhzIZFQNVdHYKSEpJwhSggj6hgMcIlxQSlTJ38YUZIjcgoGiCJSKMHoORjF-InyUKxKSgZgPYZVt-l10Ml_WzhL29UOdg6-3s9u4Hg6hbpd5WtGY_JGN7BqtjHZ4Nt3OLfmo_VfWxuh6wJctDol267sXmCbRodM1jF6l4XJd-0FOHO6iXb0u4dg8fgwr56LydvTSzWeFD3hZSqMJmxpFNIlI9zwpSZcmjK7t3QpjXScGVYyZUSJtKCWCcaNliJ3Q61UztEhuDr87XXMll3QrfGx7oPf6LCrsaCCCKYy7_rAi_0-jw31suvWscao3hde_yuc_gBCumzJ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Dafonte, Carlos</creator><creator>Rodríguez, Alejandra</creator><creator>Arcay, Bernardino</creator><creator>Carricajo, Iciar</creator><creator>Manteiga, Minia</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification</title><author>Dafonte, Carlos ; Rodríguez, Alejandra ; Arcay, Bernardino ; Carricajo, Iciar ; Manteiga, Minia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-ca24bc90a6425c5ba258c6743e3b8c8f54c4649c760a73e4745ca877803e89ff3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Expert System</topic><topic>Human Expert</topic><topic>Input Pattern</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Spectral Parameter</topic><topic>Spectral Type</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dafonte, Carlos</creatorcontrib><creatorcontrib>Rodríguez, Alejandra</creatorcontrib><creatorcontrib>Arcay, Bernardino</creatorcontrib><creatorcontrib>Carricajo, Iciar</creatorcontrib><creatorcontrib>Manteiga, Minia</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dafonte, Carlos</au><au>Rodríguez, Alejandra</au><au>Arcay, Bernardino</au><au>Carricajo, Iciar</au><au>Manteiga, Minia</au><au>Sanfeliu, Alberto</au><au>Cortés, Manuel Lazo</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>566</spage><epage>577</epage><pages>566-577</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540298502</isbn><isbn>3540298509</isbn><eisbn>9783540322429</eisbn><eisbn>3540322426</eisbn><abstract>The purpose of this work is to present a comparative analysis of knowledge-based systems, artificial neural networks and statistical clustering algorithms applied to the classification of low resolution stellar spectra. These techniques were used to classify a sample of approximately 258 optical spectra from public catalogues using the standard MK system. At present, we already dispose of a hybrid system that carries out this task, applying the most appropriate classification method to each spectrum with a success rate that is similar to that of human experts.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11578079_59</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2005, p.566-577 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17372749 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Expert System Human Expert Input Pattern Pattern recognition. Digital image processing. Computational geometry Spectral Parameter Spectral Type |
title | A Comparative Study of KBS, ANN and Statistical Clustering Techniques for Unattended Stellar Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A44%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=A%20Comparative%20Study%20of%20KBS,%20ANN%20and%20Statistical%20Clustering%20Techniques%20for%20Unattended%20Stellar%20Classification&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Dafonte,%20Carlos&rft.date=2005&rft.spage=566&rft.epage=577&rft.pages=566-577&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540298502&rft.isbn_list=3540298509&rft_id=info:doi/10.1007/11578079_59&rft_dat=%3Cpascalfrancis_sprin%3E17372749%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540322429&rft.eisbn_list=3540322426&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |