Regularization of Mappings Between Implicit Manifolds of Arbitrary Dimension and Codimension

We study in this paper the problem of regularization of mappings between manifolds of arbitrary dimension and codimension using variational methods. This is of interest in various applications such as diffusion tensor imaging and EEG processing on the cortex. We consider the cases where the source a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shafrir, David, Sochen, Nir A., Deriche, Rachid
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue
container_start_page 344
container_title
container_volume
creator Shafrir, David
Sochen, Nir A.
Deriche, Rachid
description We study in this paper the problem of regularization of mappings between manifolds of arbitrary dimension and codimension using variational methods. This is of interest in various applications such as diffusion tensor imaging and EEG processing on the cortex. We consider the cases where the source and target manifold are represented implicitly, using multiple level set functions, or explicitly, as functions of the spatial coordinates. We derive the general implicit differential operators, and show how they can be used to generalize previous results concerning the Beltrami flow and other similar flows. As examples, We show how these results can be used to regularize gray level and color images on manifolds, and to regularize tangent vector fields and direction fields on manifolds.
doi_str_mv 10.1007/11567646_29
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17265809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17265809</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-30d7c3861fa476ea3f746279de98ca512ccd7040d4994459a22e41bfd763b2f83</originalsourceid><addsrcrecordid>eNpNkE1LxDAQhuMXuK578g_04sFDdSZJk-a4rl8LK4LoTShpkyzRblqaLqK_3pZVcC7D8DwzDC8hZwiXCCCvEDMhBRcFVXvkhGUcGEVQ-T6ZoEBMGePqgMyUzEdGFeM5PyQTYEBTJTk7JrMY32EoRkEgTMjbs11va935b937JiSNSx512_qwjsm17T-tDcly09a-8v1AgndNbeKozbvS953uvpIbv7Ehjts6mGTRmL_5lBw5XUc7--1T8np3-7J4SFdP98vFfJW2FFWfMjCyYrlAp7kUVjMnuaBSGavySmdIq8pI4GC4UpxnSlNqOZbOSMFK6nI2Jee7u62Ola5dp0PlY9F2fjP8V6CkIstBDd7FzosDCmvbFWXTfMQCoRjjLf7Fy34AQXtnlg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Regularization of Mappings Between Implicit Manifolds of Arbitrary Dimension and Codimension</title><source>Springer Books</source><creator>Shafrir, David ; Sochen, Nir A. ; Deriche, Rachid</creator><contributor>Paragios, Nikos ; Faugeras, Olivier ; Chan, Tony ; Schnörr, Christoph</contributor><creatorcontrib>Shafrir, David ; Sochen, Nir A. ; Deriche, Rachid ; Paragios, Nikos ; Faugeras, Olivier ; Chan, Tony ; Schnörr, Christoph</creatorcontrib><description>We study in this paper the problem of regularization of mappings between manifolds of arbitrary dimension and codimension using variational methods. This is of interest in various applications such as diffusion tensor imaging and EEG processing on the cortex. We consider the cases where the source and target manifold are represented implicitly, using multiple level set functions, or explicitly, as functions of the spatial coordinates. We derive the general implicit differential operators, and show how they can be used to generalize previous results concerning the Beltrami flow and other similar flows. As examples, We show how these results can be used to regularize gray level and color images on manifolds, and to regularize tangent vector fields and direction fields on manifolds.</description><edition>1ère éd</edition><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540293484</identifier><identifier>ISBN: 3540293485</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540321098</identifier><identifier>EISBN: 9783540321095</identifier><identifier>DOI: 10.1007/11567646_29</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Beltrami Flow ; Computer science; control theory; systems ; Exact sciences and technology ; Graph Manifold ; Implicit Constraint ; Intersection Manifold ; Pattern recognition. Digital image processing. Computational geometry ; Target Manifold</subject><ispartof>Lecture notes in computer science, 2005, p.344-355</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11567646_29$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11567646_29$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17265809$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Paragios, Nikos</contributor><contributor>Faugeras, Olivier</contributor><contributor>Chan, Tony</contributor><contributor>Schnörr, Christoph</contributor><creatorcontrib>Shafrir, David</creatorcontrib><creatorcontrib>Sochen, Nir A.</creatorcontrib><creatorcontrib>Deriche, Rachid</creatorcontrib><title>Regularization of Mappings Between Implicit Manifolds of Arbitrary Dimension and Codimension</title><title>Lecture notes in computer science</title><description>We study in this paper the problem of regularization of mappings between manifolds of arbitrary dimension and codimension using variational methods. This is of interest in various applications such as diffusion tensor imaging and EEG processing on the cortex. We consider the cases where the source and target manifold are represented implicitly, using multiple level set functions, or explicitly, as functions of the spatial coordinates. We derive the general implicit differential operators, and show how they can be used to generalize previous results concerning the Beltrami flow and other similar flows. As examples, We show how these results can be used to regularize gray level and color images on manifolds, and to regularize tangent vector fields and direction fields on manifolds.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Beltrami Flow</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Graph Manifold</subject><subject>Implicit Constraint</subject><subject>Intersection Manifold</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Target Manifold</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540293484</isbn><isbn>3540293485</isbn><isbn>3540321098</isbn><isbn>9783540321095</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1LxDAQhuMXuK578g_04sFDdSZJk-a4rl8LK4LoTShpkyzRblqaLqK_3pZVcC7D8DwzDC8hZwiXCCCvEDMhBRcFVXvkhGUcGEVQ-T6ZoEBMGePqgMyUzEdGFeM5PyQTYEBTJTk7JrMY32EoRkEgTMjbs11va935b937JiSNSx512_qwjsm17T-tDcly09a-8v1AgndNbeKozbvS953uvpIbv7Ehjts6mGTRmL_5lBw5XUc7--1T8np3-7J4SFdP98vFfJW2FFWfMjCyYrlAp7kUVjMnuaBSGavySmdIq8pI4GC4UpxnSlNqOZbOSMFK6nI2Jee7u62Ola5dp0PlY9F2fjP8V6CkIstBDd7FzosDCmvbFWXTfMQCoRjjLf7Fy34AQXtnlg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Shafrir, David</creator><creator>Sochen, Nir A.</creator><creator>Deriche, Rachid</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Regularization of Mappings Between Implicit Manifolds of Arbitrary Dimension and Codimension</title><author>Shafrir, David ; Sochen, Nir A. ; Deriche, Rachid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-30d7c3861fa476ea3f746279de98ca512ccd7040d4994459a22e41bfd763b2f83</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Beltrami Flow</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Graph Manifold</topic><topic>Implicit Constraint</topic><topic>Intersection Manifold</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Target Manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafrir, David</creatorcontrib><creatorcontrib>Sochen, Nir A.</creatorcontrib><creatorcontrib>Deriche, Rachid</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafrir, David</au><au>Sochen, Nir A.</au><au>Deriche, Rachid</au><au>Paragios, Nikos</au><au>Faugeras, Olivier</au><au>Chan, Tony</au><au>Schnörr, Christoph</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Regularization of Mappings Between Implicit Manifolds of Arbitrary Dimension and Codimension</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>344</spage><epage>355</epage><pages>344-355</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540293484</isbn><isbn>3540293485</isbn><eisbn>3540321098</eisbn><eisbn>9783540321095</eisbn><abstract>We study in this paper the problem of regularization of mappings between manifolds of arbitrary dimension and codimension using variational methods. This is of interest in various applications such as diffusion tensor imaging and EEG processing on the cortex. We consider the cases where the source and target manifold are represented implicitly, using multiple level set functions, or explicitly, as functions of the spatial coordinates. We derive the general implicit differential operators, and show how they can be used to generalize previous results concerning the Beltrami flow and other similar flows. As examples, We show how these results can be used to regularize gray level and color images on manifolds, and to regularize tangent vector fields and direction fields on manifolds.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11567646_29</doi><tpages>12</tpages><edition>1ère éd</edition></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.344-355
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17265809
source Springer Books
subjects Applied sciences
Artificial intelligence
Beltrami Flow
Computer science
control theory
systems
Exact sciences and technology
Graph Manifold
Implicit Constraint
Intersection Manifold
Pattern recognition. Digital image processing. Computational geometry
Target Manifold
title Regularization of Mappings Between Implicit Manifolds of Arbitrary Dimension and Codimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A58%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Regularization%20of%20Mappings%20Between%20Implicit%20Manifolds%20of%20Arbitrary%20Dimension%20and%20Codimension&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Shafrir,%20David&rft.date=2005&rft.spage=344&rft.epage=355&rft.pages=344-355&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540293484&rft.isbn_list=3540293485&rft_id=info:doi/10.1007/11567646_29&rft_dat=%3Cpascalfrancis_sprin%3E17265809%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540321098&rft.eisbn_list=9783540321095&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true