A Directed Evolution Modularity Framework for Design of Reconfigurable Machine Tools
Reconfigurable machine tools (RMT) have emerged as a potential solution to meet the demand for rapid adaptation in the next generation manufacturing systems. While a significant amount of research in RMT design is available, formal design methodologies are still under development. In previous work,...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reconfigurable machine tools (RMT) have emerged as a potential solution to meet the demand for rapid adaptation in the next generation manufacturing systems. While a significant amount of research in RMT design is available, formal design methodologies are still under development. In previous work, a modularity framework technique for the development of RMT modules was outlined. The technique focused on module functionality and constructability. While in general these characteristics are critical for the survival of any product, specific characteristics of RMT were not easily addressed by the proposed methodology. In particular, convertibility, in the form of upgradeability and adaptability, was not addressed. This article presents an enhanced modularity framework that takes into consideration the intended evolution lines of the reconfigurable machine tool. The basic principles are outlined and applied to the design of a machine tool for metal working. Recommendations for future enhancements to the framework are made, in particular, the possibility of developing a convertibility index to facilitate evaluation of candidate designs is discussed. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11555223_27 |