What is context and how can an agent learn to find and use it when making decisions?
Developing context-aware applications needs facilities for recognizing context, reasoning on it and adapting accordingly. In this paper, we propose a context-based multi-agent architecture consisting of context aware agents able to learn how to distinguish relevant from non relevant context and to m...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 121 |
---|---|
container_issue | |
container_start_page | 112 |
container_title | |
container_volume | |
creator | BUCUR, Oana BEAUNE, Philippe BOISSIER, Olivier |
description | Developing context-aware applications needs facilities for recognizing context, reasoning on it and adapting accordingly. In this paper, we propose a context-based multi-agent architecture consisting of context aware agents able to learn how to distinguish relevant from non relevant context and to make appropriate decisions based on it. This multi-agent system interacts with a context manager layer, based on an ontological representation of context, which is able to answer context-related queries. The use of this architecture is illustrated on a test MAS for agenda management, using the JADE-LEAP platform on PCs and PDAs. |
doi_str_mv | 10.1007/11559221_12 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17182793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_emse_00758344v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h220t-6b024db08aff1eb54fcfb09a3afb21bd5377244dc30a48daf371e1566b56e8ea3</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMfYKk9-Q_k4kVYzeRjszlJKWqFgpeKx2V2N-lGt9myiVb_e7dUfDyYw_vNMDxCroDdAmP6DkApwzmUwE_IBHKATAhpTsnM6EIoybhhMjdnZMIE45nRUlyQWYzvbJQAw3I5Ieu3FhP1kdZ9SPY7UQwNbfs9rTHQgzc2JNpZHAJNPXV-jA_IZ7TUJ7pvbaBb_PBhQxtb--j7EO8vybnDLtrZ35yS18eH9WKZrV6enhfzVdZyzlKWV4zLpmIFOge2UtLVrmIGBbqKQ9UooTWXsqkFQ1k06IQGCyrPK5XbwqKYkpvj3Ra7cjf4LQ4_ZY--XM5Xpd1GW449qUJI-QUjfH2Edxhr7NyAYfz3fw00FFwbIX4BFehjkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>What is context and how can an agent learn to find and use it when making decisions?</title><source>Springer Books</source><creator>BUCUR, Oana ; BEAUNE, Philippe ; BOISSIER, Olivier</creator><creatorcontrib>BUCUR, Oana ; BEAUNE, Philippe ; BOISSIER, Olivier</creatorcontrib><description>Developing context-aware applications needs facilities for recognizing context, reasoning on it and adapting accordingly. In this paper, we propose a context-based multi-agent architecture consisting of context aware agents able to learn how to distinguish relevant from non relevant context and to make appropriate decisions based on it. This multi-agent system interacts with a context manager layer, based on an ontological representation of context, which is able to answer context-related queries. The use of this architecture is illustrated on a test MAS for agenda management, using the JADE-LEAP platform on PCs and PDAs.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540290469</identifier><identifier>ISBN: 354029046X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>DOI: 10.1007/11559221_12</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Exact sciences and technology ; Modeling and Simulation</subject><ispartof>CEEMAS'05 Proceedings of the 4th international Central and Eastern European conference on Multi-Agent Systems and Applications, 2005, p.112-121</ispartof><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2956-0533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,776,780,785,786,881,4036,4037,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17182793$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal-emse.ccsd.cnrs.fr/emse-00758344$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>BUCUR, Oana</creatorcontrib><creatorcontrib>BEAUNE, Philippe</creatorcontrib><creatorcontrib>BOISSIER, Olivier</creatorcontrib><title>What is context and how can an agent learn to find and use it when making decisions?</title><title>CEEMAS'05 Proceedings of the 4th international Central and Eastern European conference on Multi-Agent Systems and Applications</title><description>Developing context-aware applications needs facilities for recognizing context, reasoning on it and adapting accordingly. In this paper, we propose a context-based multi-agent architecture consisting of context aware agents able to learn how to distinguish relevant from non relevant context and to make appropriate decisions based on it. This multi-agent system interacts with a context manager layer, based on an ontological representation of context, which is able to answer context-related queries. The use of this architecture is illustrated on a test MAS for agenda management, using the JADE-LEAP platform on PCs and PDAs.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Modeling and Simulation</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540290469</isbn><isbn>354029046X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kM1LAzEQxYMfYKk9-Q_k4kVYzeRjszlJKWqFgpeKx2V2N-lGt9myiVb_e7dUfDyYw_vNMDxCroDdAmP6DkApwzmUwE_IBHKATAhpTsnM6EIoybhhMjdnZMIE45nRUlyQWYzvbJQAw3I5Ieu3FhP1kdZ9SPY7UQwNbfs9rTHQgzc2JNpZHAJNPXV-jA_IZ7TUJ7pvbaBb_PBhQxtb--j7EO8vybnDLtrZ35yS18eH9WKZrV6enhfzVdZyzlKWV4zLpmIFOge2UtLVrmIGBbqKQ9UooTWXsqkFQ1k06IQGCyrPK5XbwqKYkpvj3Ra7cjf4LQ4_ZY--XM5Xpd1GW449qUJI-QUjfH2Edxhr7NyAYfz3fw00FFwbIX4BFehjkA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>BUCUR, Oana</creator><creator>BEAUNE, Philippe</creator><creator>BOISSIER, Olivier</creator><general>Springer</general><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2956-0533</orcidid></search><sort><creationdate>2005</creationdate><title>What is context and how can an agent learn to find and use it when making decisions?</title><author>BUCUR, Oana ; BEAUNE, Philippe ; BOISSIER, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h220t-6b024db08aff1eb54fcfb09a3afb21bd5377244dc30a48daf371e1566b56e8ea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Modeling and Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BUCUR, Oana</creatorcontrib><creatorcontrib>BEAUNE, Philippe</creatorcontrib><creatorcontrib>BOISSIER, Olivier</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BUCUR, Oana</au><au>BEAUNE, Philippe</au><au>BOISSIER, Olivier</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>What is context and how can an agent learn to find and use it when making decisions?</atitle><btitle>CEEMAS'05 Proceedings of the 4th international Central and Eastern European conference on Multi-Agent Systems and Applications</btitle><date>2005</date><risdate>2005</risdate><spage>112</spage><epage>121</epage><pages>112-121</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540290469</isbn><isbn>354029046X</isbn><abstract>Developing context-aware applications needs facilities for recognizing context, reasoning on it and adapting accordingly. In this paper, we propose a context-based multi-agent architecture consisting of context aware agents able to learn how to distinguish relevant from non relevant context and to make appropriate decisions based on it. This multi-agent system interacts with a context manager layer, based on an ontological representation of context, which is able to answer context-related queries. The use of this architecture is illustrated on a test MAS for agenda management, using the JADE-LEAP platform on PCs and PDAs.</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/11559221_12</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2956-0533</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | CEEMAS'05 Proceedings of the 4th international Central and Eastern European conference on Multi-Agent Systems and Applications, 2005, p.112-121 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17182793 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer Science Computer science control theory systems Exact sciences and technology Modeling and Simulation |
title | What is context and how can an agent learn to find and use it when making decisions? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A48%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=What%20is%20context%20and%20how%20can%20an%20agent%20learn%20to%20find%20and%20use%20it%20when%20making%20decisions?&rft.btitle=CEEMAS'05%20Proceedings%20of%20the%204th%20international%20Central%20and%20Eastern%20European%20conference%20on%20Multi-Agent%20Systems%20and%20Applications&rft.au=BUCUR,%20Oana&rft.date=2005&rft.spage=112&rft.epage=121&rft.pages=112-121&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540290469&rft.isbn_list=354029046X&rft_id=info:doi/10.1007/11559221_12&rft_dat=%3Chal_pasca%3Eoai_HAL_emse_00758344v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |