Outlier Detection Using Rough Set Theory

In this paper, we suggest to exploit the framework of rough set for detecting outliers — individuals who behave in an unexpected way or feature abnormal properties. The ability to locate outliers can help to maintain knowledge base integrity and to single out irregular individuals. First, we formall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiang, Feng, Sui, Yuefei, Cao, Cungen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue
container_start_page 79
container_title
container_volume
creator Jiang, Feng
Sui, Yuefei
Cao, Cungen
description In this paper, we suggest to exploit the framework of rough set for detecting outliers — individuals who behave in an unexpected way or feature abnormal properties. The ability to locate outliers can help to maintain knowledge base integrity and to single out irregular individuals. First, we formally define the notions of exceptional set and minimal exceptional set. We then analyze some special cases of exceptional set and minimal exceptional set. Finally, we introduce a new definition for outliers as well as the definition of exceptional degree. Through calculating the exceptional degree for each object in minimal exceptional sets, we can find out all outliers in a given dataset.
doi_str_mv 10.1007/11548706_9
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17182553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17182553</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-ec7ee33c096766ab827329a02489df7fb24fea9724d89f4fba2b4efc67e0e5b73</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1LopRu-IJskLoJXD_iay9Ry0uqVAnateWk120gJFGcLvr3BBXBahZzNJoZxm443HEAvOc8UwZBO3vCJhaNzBRIboQyp2zENeeplMqe_XnCaA3mnI1AgkgtKnnJrmL8AACBVozYdLnvq5K6ZE49FX3Z1Mk6lvU2eWv2213yTn2y2lHTHa7ZRfBVpMmvjtn66XE1e0kXy-fX2cMibQU3fUoFEklZgNWotc-NQCmsh6Gh3QQMuVCBvEWhNsYGFXIvckWh0EhAWY5yzG6Pua2Pha9C5-uijK7tyi_fHRzHYW2WyYGbHrk4WPWWOpc3zWd0HNzPU-7_KfkNHsFURg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Outlier Detection Using Rough Set Theory</title><source>Springer Books</source><creator>Jiang, Feng ; Sui, Yuefei ; Cao, Cungen</creator><contributor>Yao, JingTao ; Ziarko, Wojciech ; Ślęzak, Dominik ; Peters, James F. ; Hu, Xiaohua</contributor><creatorcontrib>Jiang, Feng ; Sui, Yuefei ; Cao, Cungen ; Yao, JingTao ; Ziarko, Wojciech ; Ślęzak, Dominik ; Peters, James F. ; Hu, Xiaohua</creatorcontrib><description>In this paper, we suggest to exploit the framework of rough set for detecting outliers — individuals who behave in an unexpected way or feature abnormal properties. The ability to locate outliers can help to maintain knowledge base integrity and to single out irregular individuals. First, we formally define the notions of exceptional set and minimal exceptional set. We then analyze some special cases of exceptional set and minimal exceptional set. Finally, we introduce a new definition for outliers as well as the definition of exceptional degree. Through calculating the exceptional degree for each object in minimal exceptional sets, we can find out all outliers in a given dataset.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540286608</identifier><identifier>ISBN: 3540286608</identifier><identifier>ISBN: 3540286535</identifier><identifier>ISBN: 9783540286530</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318248</identifier><identifier>EISBN: 3540318240</identifier><identifier>DOI: 10.1007/11548706_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2005, p.79-87</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11548706_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11548706_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17182553$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Yao, JingTao</contributor><contributor>Ziarko, Wojciech</contributor><contributor>Ślęzak, Dominik</contributor><contributor>Peters, James F.</contributor><contributor>Hu, Xiaohua</contributor><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Sui, Yuefei</creatorcontrib><creatorcontrib>Cao, Cungen</creatorcontrib><title>Outlier Detection Using Rough Set Theory</title><title>Lecture notes in computer science</title><description>In this paper, we suggest to exploit the framework of rough set for detecting outliers — individuals who behave in an unexpected way or feature abnormal properties. The ability to locate outliers can help to maintain knowledge base integrity and to single out irregular individuals. First, we formally define the notions of exceptional set and minimal exceptional set. We then analyze some special cases of exceptional set and minimal exceptional set. Finally, we introduce a new definition for outliers as well as the definition of exceptional degree. Through calculating the exceptional degree for each object in minimal exceptional sets, we can find out all outliers in a given dataset.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540286608</isbn><isbn>3540286608</isbn><isbn>3540286535</isbn><isbn>9783540286530</isbn><isbn>9783540318248</isbn><isbn>3540318240</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkMtOwzAURM1LopRu-IJskLoJXD_iay9Ry0uqVAnateWk120gJFGcLvr3BBXBahZzNJoZxm443HEAvOc8UwZBO3vCJhaNzBRIboQyp2zENeeplMqe_XnCaA3mnI1AgkgtKnnJrmL8AACBVozYdLnvq5K6ZE49FX3Z1Mk6lvU2eWv2213yTn2y2lHTHa7ZRfBVpMmvjtn66XE1e0kXy-fX2cMibQU3fUoFEklZgNWotc-NQCmsh6Gh3QQMuVCBvEWhNsYGFXIvckWh0EhAWY5yzG6Pua2Pha9C5-uijK7tyi_fHRzHYW2WyYGbHrk4WPWWOpc3zWd0HNzPU-7_KfkNHsFURg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Jiang, Feng</creator><creator>Sui, Yuefei</creator><creator>Cao, Cungen</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Outlier Detection Using Rough Set Theory</title><author>Jiang, Feng ; Sui, Yuefei ; Cao, Cungen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-ec7ee33c096766ab827329a02489df7fb24fea9724d89f4fba2b4efc67e0e5b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Sui, Yuefei</creatorcontrib><creatorcontrib>Cao, Cungen</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Feng</au><au>Sui, Yuefei</au><au>Cao, Cungen</au><au>Yao, JingTao</au><au>Ziarko, Wojciech</au><au>Ślęzak, Dominik</au><au>Peters, James F.</au><au>Hu, Xiaohua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Outlier Detection Using Rough Set Theory</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>79</spage><epage>87</epage><pages>79-87</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540286608</isbn><isbn>3540286608</isbn><isbn>3540286535</isbn><isbn>9783540286530</isbn><eisbn>9783540318248</eisbn><eisbn>3540318240</eisbn><abstract>In this paper, we suggest to exploit the framework of rough set for detecting outliers — individuals who behave in an unexpected way or feature abnormal properties. The ability to locate outliers can help to maintain knowledge base integrity and to single out irregular individuals. First, we formally define the notions of exceptional set and minimal exceptional set. We then analyze some special cases of exceptional set and minimal exceptional set. Finally, we introduce a new definition for outliers as well as the definition of exceptional degree. Through calculating the exceptional degree for each object in minimal exceptional sets, we can find out all outliers in a given dataset.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11548706_9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.79-87
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17182553
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title Outlier Detection Using Rough Set Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T11%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Outlier%20Detection%20Using%20Rough%20Set%20Theory&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Jiang,%20Feng&rft.date=2005&rft.spage=79&rft.epage=87&rft.pages=79-87&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540286608&rft.isbn_list=3540286608&rft.isbn_list=3540286535&rft.isbn_list=9783540286530&rft_id=info:doi/10.1007/11548706_9&rft_dat=%3Cpascalfrancis_sprin%3E17182553%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318248&rft.eisbn_list=3540318240&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true