Combined Kernel Function Approach in SVM for Diagnosis of Cancer

The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nguyen, Ha-Nam, Ohn, Syng-Yup, Park, Jaehyun, Park, Kyu-Sik
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1026
container_issue
container_start_page 1017
container_title
container_volume
creator Nguyen, Ha-Nam
Ohn, Syng-Yup
Park, Jaehyun
Park, Kyu-Sik
description The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications. This paper proposes a new kernel function for support vector machine (SVM) and its learning method that results in fast convergence and good classification performance. The new kernel function is created by combining a set of kernel functions. A new learning method based on evolution algorithm (EA) is proposed to obtain the optimal decision model consisting of an optimal set of features as well as an optimal set of the parameters for combined kernel function. The experiments on clinical datasets such as stomach cancer, colon cancer, and leukemia datasets data sets indicates that the combined kernel function shows higher and more stable classification performance than other kernel functions.
doi_str_mv 10.1007/11539087_134
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17135835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17135835</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-c14e0738736fdd301ce33807480858a316af1356209f2ef1c72be61a1a3bb9a03</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRFvY-AFeWJAC7-vXiZ2NKqWAKGLgY42c1C6B1o7sMvDvCSoD0w333J10jJ0hXCKAukLMqQStaiS5x8aUSyDUOcl9NsICMSOS5cHOEJoEyUM2AgKRlUrSMRun9AEAQpVixK6rsGk6b5f8wUZv13z-5dttFzyf9n0Mpn3nnefPb4_chchnnVn5kLrEg-OV8a2NJ-zImXWyp386Ya_zm5fqLls83d5X00XWCwHbrEVpQZFWVLjlkgBbS6RBSQ0614awMA4pLwSUTliHrRKNLdCgoaYpDdCEne96e5Nas3ZxWO9S3cduY-J3jWpIa8oH7mLHpcHyKxvrJoTPVCPUv-_V_9-jHyt2WoA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Combined Kernel Function Approach in SVM for Diagnosis of Cancer</title><source>Springer Books</source><creator>Nguyen, Ha-Nam ; Ohn, Syng-Yup ; Park, Jaehyun ; Park, Kyu-Sik</creator><contributor>Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</contributor><creatorcontrib>Nguyen, Ha-Nam ; Ohn, Syng-Yup ; Park, Jaehyun ; Park, Kyu-Sik ; Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</creatorcontrib><description>The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications. This paper proposes a new kernel function for support vector machine (SVM) and its learning method that results in fast convergence and good classification performance. The new kernel function is created by combining a set of kernel functions. A new learning method based on evolution algorithm (EA) is proposed to obtain the optimal decision model consisting of an optimal set of features as well as an optimal set of the parameters for combined kernel function. The experiments on clinical datasets such as stomach cancer, colon cancer, and leukemia datasets data sets indicates that the combined kernel function shows higher and more stable classification performance than other kernel functions.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540283234</identifier><identifier>ISBN: 9783540283232</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318534</identifier><identifier>EISBN: 9783540318538</identifier><identifier>DOI: 10.1007/11539087_134</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Cancer Dataset ; Computer science; control theory; systems ; Evolution Algorithm ; Exact sciences and technology ; High Dimensional Feature Space ; Kernel Function ; Support Vector Machine</subject><ispartof>Advances in Natural Computation, 2005, p.1017-1026</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11539087_134$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11539087_134$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17135835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ong, Yew Soon</contributor><contributor>Chen, Ke</contributor><contributor>Wang, Lipo</contributor><creatorcontrib>Nguyen, Ha-Nam</creatorcontrib><creatorcontrib>Ohn, Syng-Yup</creatorcontrib><creatorcontrib>Park, Jaehyun</creatorcontrib><creatorcontrib>Park, Kyu-Sik</creatorcontrib><title>Combined Kernel Function Approach in SVM for Diagnosis of Cancer</title><title>Advances in Natural Computation</title><description>The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications. This paper proposes a new kernel function for support vector machine (SVM) and its learning method that results in fast convergence and good classification performance. The new kernel function is created by combining a set of kernel functions. A new learning method based on evolution algorithm (EA) is proposed to obtain the optimal decision model consisting of an optimal set of features as well as an optimal set of the parameters for combined kernel function. The experiments on clinical datasets such as stomach cancer, colon cancer, and leukemia datasets data sets indicates that the combined kernel function shows higher and more stable classification performance than other kernel functions.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cancer Dataset</subject><subject>Computer science; control theory; systems</subject><subject>Evolution Algorithm</subject><subject>Exact sciences and technology</subject><subject>High Dimensional Feature Space</subject><subject>Kernel Function</subject><subject>Support Vector Machine</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540283234</isbn><isbn>9783540283232</isbn><isbn>3540318534</isbn><isbn>9783540318538</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAYhM2XRFvY-AFeWJAC7-vXiZ2NKqWAKGLgY42c1C6B1o7sMvDvCSoD0w333J10jJ0hXCKAukLMqQStaiS5x8aUSyDUOcl9NsICMSOS5cHOEJoEyUM2AgKRlUrSMRun9AEAQpVixK6rsGk6b5f8wUZv13z-5dttFzyf9n0Mpn3nnefPb4_chchnnVn5kLrEg-OV8a2NJ-zImXWyp386Ya_zm5fqLls83d5X00XWCwHbrEVpQZFWVLjlkgBbS6RBSQ0614awMA4pLwSUTliHrRKNLdCgoaYpDdCEne96e5Nas3ZxWO9S3cduY-J3jWpIa8oH7mLHpcHyKxvrJoTPVCPUv-_V_9-jHyt2WoA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Nguyen, Ha-Nam</creator><creator>Ohn, Syng-Yup</creator><creator>Park, Jaehyun</creator><creator>Park, Kyu-Sik</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Combined Kernel Function Approach in SVM for Diagnosis of Cancer</title><author>Nguyen, Ha-Nam ; Ohn, Syng-Yup ; Park, Jaehyun ; Park, Kyu-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-c14e0738736fdd301ce33807480858a316af1356209f2ef1c72be61a1a3bb9a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cancer Dataset</topic><topic>Computer science; control theory; systems</topic><topic>Evolution Algorithm</topic><topic>Exact sciences and technology</topic><topic>High Dimensional Feature Space</topic><topic>Kernel Function</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Ha-Nam</creatorcontrib><creatorcontrib>Ohn, Syng-Yup</creatorcontrib><creatorcontrib>Park, Jaehyun</creatorcontrib><creatorcontrib>Park, Kyu-Sik</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Ha-Nam</au><au>Ohn, Syng-Yup</au><au>Park, Jaehyun</au><au>Park, Kyu-Sik</au><au>Ong, Yew Soon</au><au>Chen, Ke</au><au>Wang, Lipo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Combined Kernel Function Approach in SVM for Diagnosis of Cancer</atitle><btitle>Advances in Natural Computation</btitle><date>2005</date><risdate>2005</risdate><spage>1017</spage><epage>1026</epage><pages>1017-1026</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540283234</isbn><isbn>9783540283232</isbn><eisbn>3540318534</eisbn><eisbn>9783540318538</eisbn><abstract>The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications. This paper proposes a new kernel function for support vector machine (SVM) and its learning method that results in fast convergence and good classification performance. The new kernel function is created by combining a set of kernel functions. A new learning method based on evolution algorithm (EA) is proposed to obtain the optimal decision model consisting of an optimal set of features as well as an optimal set of the parameters for combined kernel function. The experiments on clinical datasets such as stomach cancer, colon cancer, and leukemia datasets data sets indicates that the combined kernel function shows higher and more stable classification performance than other kernel functions.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11539087_134</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Natural Computation, 2005, p.1017-1026
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17135835
source Springer Books
subjects Applied sciences
Artificial intelligence
Cancer Dataset
Computer science
control theory
systems
Evolution Algorithm
Exact sciences and technology
High Dimensional Feature Space
Kernel Function
Support Vector Machine
title Combined Kernel Function Approach in SVM for Diagnosis of Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Combined%20Kernel%20Function%20Approach%20in%20SVM%20for%20Diagnosis%20of%20Cancer&rft.btitle=Advances%20in%20Natural%20Computation&rft.au=Nguyen,%20Ha-Nam&rft.date=2005&rft.spage=1017&rft.epage=1026&rft.pages=1017-1026&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540283234&rft.isbn_list=9783540283232&rft_id=info:doi/10.1007/11539087_134&rft_dat=%3Cpascalfrancis_sprin%3E17135835%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318534&rft.eisbn_list=9783540318538&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true