Combined Kernel Function Approach in SVM for Diagnosis of Cancer
The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications....
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1026 |
---|---|
container_issue | |
container_start_page | 1017 |
container_title | |
container_volume | |
creator | Nguyen, Ha-Nam Ohn, Syng-Yup Park, Jaehyun Park, Kyu-Sik |
description | The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications. This paper proposes a new kernel function for support vector machine (SVM) and its learning method that results in fast convergence and good classification performance. The new kernel function is created by combining a set of kernel functions. A new learning method based on evolution algorithm (EA) is proposed to obtain the optimal decision model consisting of an optimal set of features as well as an optimal set of the parameters for combined kernel function. The experiments on clinical datasets such as stomach cancer, colon cancer, and leukemia datasets data sets indicates that the combined kernel function shows higher and more stable classification performance than other kernel functions. |
doi_str_mv | 10.1007/11539087_134 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17135835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17135835</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-c14e0738736fdd301ce33807480858a316af1356209f2ef1c72be61a1a3bb9a03</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRFvY-AFeWJAC7-vXiZ2NKqWAKGLgY42c1C6B1o7sMvDvCSoD0w333J10jJ0hXCKAukLMqQStaiS5x8aUSyDUOcl9NsICMSOS5cHOEJoEyUM2AgKRlUrSMRun9AEAQpVixK6rsGk6b5f8wUZv13z-5dttFzyf9n0Mpn3nnefPb4_chchnnVn5kLrEg-OV8a2NJ-zImXWyp386Ya_zm5fqLls83d5X00XWCwHbrEVpQZFWVLjlkgBbS6RBSQ0614awMA4pLwSUTliHrRKNLdCgoaYpDdCEne96e5Nas3ZxWO9S3cduY-J3jWpIa8oH7mLHpcHyKxvrJoTPVCPUv-_V_9-jHyt2WoA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Combined Kernel Function Approach in SVM for Diagnosis of Cancer</title><source>Springer Books</source><creator>Nguyen, Ha-Nam ; Ohn, Syng-Yup ; Park, Jaehyun ; Park, Kyu-Sik</creator><contributor>Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</contributor><creatorcontrib>Nguyen, Ha-Nam ; Ohn, Syng-Yup ; Park, Jaehyun ; Park, Kyu-Sik ; Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</creatorcontrib><description>The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications. This paper proposes a new kernel function for support vector machine (SVM) and its learning method that results in fast convergence and good classification performance. The new kernel function is created by combining a set of kernel functions. A new learning method based on evolution algorithm (EA) is proposed to obtain the optimal decision model consisting of an optimal set of features as well as an optimal set of the parameters for combined kernel function. The experiments on clinical datasets such as stomach cancer, colon cancer, and leukemia datasets data sets indicates that the combined kernel function shows higher and more stable classification performance than other kernel functions.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540283234</identifier><identifier>ISBN: 9783540283232</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318534</identifier><identifier>EISBN: 9783540318538</identifier><identifier>DOI: 10.1007/11539087_134</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Cancer Dataset ; Computer science; control theory; systems ; Evolution Algorithm ; Exact sciences and technology ; High Dimensional Feature Space ; Kernel Function ; Support Vector Machine</subject><ispartof>Advances in Natural Computation, 2005, p.1017-1026</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11539087_134$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11539087_134$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17135835$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ong, Yew Soon</contributor><contributor>Chen, Ke</contributor><contributor>Wang, Lipo</contributor><creatorcontrib>Nguyen, Ha-Nam</creatorcontrib><creatorcontrib>Ohn, Syng-Yup</creatorcontrib><creatorcontrib>Park, Jaehyun</creatorcontrib><creatorcontrib>Park, Kyu-Sik</creatorcontrib><title>Combined Kernel Function Approach in SVM for Diagnosis of Cancer</title><title>Advances in Natural Computation</title><description>The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications. This paper proposes a new kernel function for support vector machine (SVM) and its learning method that results in fast convergence and good classification performance. The new kernel function is created by combining a set of kernel functions. A new learning method based on evolution algorithm (EA) is proposed to obtain the optimal decision model consisting of an optimal set of features as well as an optimal set of the parameters for combined kernel function. The experiments on clinical datasets such as stomach cancer, colon cancer, and leukemia datasets data sets indicates that the combined kernel function shows higher and more stable classification performance than other kernel functions.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cancer Dataset</subject><subject>Computer science; control theory; systems</subject><subject>Evolution Algorithm</subject><subject>Exact sciences and technology</subject><subject>High Dimensional Feature Space</subject><subject>Kernel Function</subject><subject>Support Vector Machine</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540283234</isbn><isbn>9783540283232</isbn><isbn>3540318534</isbn><isbn>9783540318538</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAYhM2XRFvY-AFeWJAC7-vXiZ2NKqWAKGLgY42c1C6B1o7sMvDvCSoD0w333J10jJ0hXCKAukLMqQStaiS5x8aUSyDUOcl9NsICMSOS5cHOEJoEyUM2AgKRlUrSMRun9AEAQpVixK6rsGk6b5f8wUZv13z-5dttFzyf9n0Mpn3nnefPb4_chchnnVn5kLrEg-OV8a2NJ-zImXWyp386Ya_zm5fqLls83d5X00XWCwHbrEVpQZFWVLjlkgBbS6RBSQ0614awMA4pLwSUTliHrRKNLdCgoaYpDdCEne96e5Nas3ZxWO9S3cduY-J3jWpIa8oH7mLHpcHyKxvrJoTPVCPUv-_V_9-jHyt2WoA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Nguyen, Ha-Nam</creator><creator>Ohn, Syng-Yup</creator><creator>Park, Jaehyun</creator><creator>Park, Kyu-Sik</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Combined Kernel Function Approach in SVM for Diagnosis of Cancer</title><author>Nguyen, Ha-Nam ; Ohn, Syng-Yup ; Park, Jaehyun ; Park, Kyu-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-c14e0738736fdd301ce33807480858a316af1356209f2ef1c72be61a1a3bb9a03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cancer Dataset</topic><topic>Computer science; control theory; systems</topic><topic>Evolution Algorithm</topic><topic>Exact sciences and technology</topic><topic>High Dimensional Feature Space</topic><topic>Kernel Function</topic><topic>Support Vector Machine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Ha-Nam</creatorcontrib><creatorcontrib>Ohn, Syng-Yup</creatorcontrib><creatorcontrib>Park, Jaehyun</creatorcontrib><creatorcontrib>Park, Kyu-Sik</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Ha-Nam</au><au>Ohn, Syng-Yup</au><au>Park, Jaehyun</au><au>Park, Kyu-Sik</au><au>Ong, Yew Soon</au><au>Chen, Ke</au><au>Wang, Lipo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Combined Kernel Function Approach in SVM for Diagnosis of Cancer</atitle><btitle>Advances in Natural Computation</btitle><date>2005</date><risdate>2005</risdate><spage>1017</spage><epage>1026</epage><pages>1017-1026</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540283234</isbn><isbn>9783540283232</isbn><eisbn>3540318534</eisbn><eisbn>9783540318538</eisbn><abstract>The problem of determining optimal decision model is a difficult combinatorial task in the fields of pattern classification, machine learning, and especially bioinformatics. Recently, support vector machine (SVM) has shown a higher performance than conventional learning methods in many applications. This paper proposes a new kernel function for support vector machine (SVM) and its learning method that results in fast convergence and good classification performance. The new kernel function is created by combining a set of kernel functions. A new learning method based on evolution algorithm (EA) is proposed to obtain the optimal decision model consisting of an optimal set of features as well as an optimal set of the parameters for combined kernel function. The experiments on clinical datasets such as stomach cancer, colon cancer, and leukemia datasets data sets indicates that the combined kernel function shows higher and more stable classification performance than other kernel functions.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11539087_134</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Natural Computation, 2005, p.1017-1026 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17135835 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Cancer Dataset Computer science control theory systems Evolution Algorithm Exact sciences and technology High Dimensional Feature Space Kernel Function Support Vector Machine |
title | Combined Kernel Function Approach in SVM for Diagnosis of Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Combined%20Kernel%20Function%20Approach%20in%20SVM%20for%20Diagnosis%20of%20Cancer&rft.btitle=Advances%20in%20Natural%20Computation&rft.au=Nguyen,%20Ha-Nam&rft.date=2005&rft.spage=1017&rft.epage=1026&rft.pages=1017-1026&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540283234&rft.isbn_list=9783540283232&rft_id=info:doi/10.1007/11539087_134&rft_dat=%3Cpascalfrancis_sprin%3E17135835%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318534&rft.eisbn_list=9783540318538&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |