Fuzzy-C-Mean Determines the Principle Component Pairs to Estimate the Degree of Emotion from Facial Expressions
Although many systems exist for automatic classification of faces according to their emotional expression, these systems do not explicitly estimate the strength of given expressions. This paper describes and empirically evaluates an algorithm capable of estimating the degree to which a face expresse...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Buchkapitel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 493 |
---|---|
container_issue | |
container_start_page | 484 |
container_title | |
container_volume | |
creator | Amin, M. Ashraful Afzulpurkar, Nitin V. Dailey, Matthew N. Esichaikul, Vatcharaporn Batanov, Dentcho N. |
description | Although many systems exist for automatic classification of faces according to their emotional expression, these systems do not explicitly estimate the strength of given expressions. This paper describes and empirically evaluates an algorithm capable of estimating the degree to which a face expresses a given emotion. The system first aligns and normalizes an input face image, then applies a filter bank of Gabor wavelets and reduces the data’s dimensionality via principal components analysis. Finally, an unsupervised Fuzzy-C-Mean clustering algorithm is employed recursively on the same set of data to find the best pair of principle components from the amount of alignment of the cluster centers on a straight line. The cluster memberships are then mapped to degrees of a facial expression (i.e. less Happy, moderately happy, and very happy). In a test on 54 previously unseen happy faces., we find an orderly mapping of faces to clusters as the subject’s face moves from a neutral to very happy emotional display. Similar results are observed on 78 previously unseen surprised faces. |
doi_str_mv | 10.1007/11539506_62 |
format | Book Chapter |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17135821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17135821</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1712-d30cc581c72720dfaf26f074d5288be585fda6eac63d4f2f311bfd79e5d98c7d3</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxc0_iVKY-AJeGBgCPjuOnRG1KSAV0QHmyI3PJZDEkR0k2k9PoAzcctK9n-7ePUIugd0AY-oWQIpcsqzM-AE5EzJlArRg8pBMIANIhEjzo73AtQCeH5MJE4wnuUrFKbmI8Z2NJUBpnU-IX3zudttkljyh6egcBwxt3WGkwxvSVai7qu4bpDPf9r7DbqArU4dR9bSIQ92aAX_JOW4CIvWOFq0fat9RF3xLF6aqTUOLrz5gjOM4npMTZ5qIF399Sl4XxcvsIVk-3z_O7pZJDwp4YgWrKqmhUlxxZp1xPHNMpVZyrdcotXTWZGiqTNjUcScA1s6qHKXNdaWsmJKr_d7exMo0Lpjxk1j2YfQctuV4REjNYeSu91wcpW6DoVx7_xFLYOVP3OW_uMU31gVt0w</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Fuzzy-C-Mean Determines the Principle Component Pairs to Estimate the Degree of Emotion from Facial Expressions</title><source>Springer Books</source><creator>Amin, M. Ashraful ; Afzulpurkar, Nitin V. ; Dailey, Matthew N. ; Esichaikul, Vatcharaporn ; Batanov, Dentcho N.</creator><contributor>Jin, Yaochu ; Wang, Lipo</contributor><creatorcontrib>Amin, M. Ashraful ; Afzulpurkar, Nitin V. ; Dailey, Matthew N. ; Esichaikul, Vatcharaporn ; Batanov, Dentcho N. ; Jin, Yaochu ; Wang, Lipo</creatorcontrib><description>Although many systems exist for automatic classification of faces according to their emotional expression, these systems do not explicitly estimate the strength of given expressions. This paper describes and empirically evaluates an algorithm capable of estimating the degree to which a face expresses a given emotion. The system first aligns and normalizes an input face image, then applies a filter bank of Gabor wavelets and reduces the data’s dimensionality via principal components analysis. Finally, an unsupervised Fuzzy-C-Mean clustering algorithm is employed recursively on the same set of data to find the best pair of principle components from the amount of alignment of the cluster centers on a straight line. The cluster memberships are then mapped to degrees of a facial expression (i.e. less Happy, moderately happy, and very happy). In a test on 54 previously unseen happy faces., we find an orderly mapping of faces to clusters as the subject’s face moves from a neutral to very happy emotional display. Similar results are observed on 78 previously unseen surprised faces.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540283129</identifier><identifier>ISBN: 9783540283126</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318305</identifier><identifier>EISBN: 9783540318309</identifier><identifier>DOI: 10.1007/11539506_62</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Cluster Center ; Computer science; control theory; systems ; Exact sciences and technology ; Facial Expression ; Facial Image ; Pattern recognition. Digital image processing. Computational geometry ; Principle Component ; Principle Component Analysis</subject><ispartof>Fuzzy Systems and Knowledge Discovery, 2005, p.484-493</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11539506_62$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11539506_62$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17135821$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Jin, Yaochu</contributor><contributor>Wang, Lipo</contributor><creatorcontrib>Amin, M. Ashraful</creatorcontrib><creatorcontrib>Afzulpurkar, Nitin V.</creatorcontrib><creatorcontrib>Dailey, Matthew N.</creatorcontrib><creatorcontrib>Esichaikul, Vatcharaporn</creatorcontrib><creatorcontrib>Batanov, Dentcho N.</creatorcontrib><title>Fuzzy-C-Mean Determines the Principle Component Pairs to Estimate the Degree of Emotion from Facial Expressions</title><title>Fuzzy Systems and Knowledge Discovery</title><description>Although many systems exist for automatic classification of faces according to their emotional expression, these systems do not explicitly estimate the strength of given expressions. This paper describes and empirically evaluates an algorithm capable of estimating the degree to which a face expresses a given emotion. The system first aligns and normalizes an input face image, then applies a filter bank of Gabor wavelets and reduces the data’s dimensionality via principal components analysis. Finally, an unsupervised Fuzzy-C-Mean clustering algorithm is employed recursively on the same set of data to find the best pair of principle components from the amount of alignment of the cluster centers on a straight line. The cluster memberships are then mapped to degrees of a facial expression (i.e. less Happy, moderately happy, and very happy). In a test on 54 previously unseen happy faces., we find an orderly mapping of faces to clusters as the subject’s face moves from a neutral to very happy emotional display. Similar results are observed on 78 previously unseen surprised faces.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Cluster Center</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Facial Expression</subject><subject>Facial Image</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Principle Component</subject><subject>Principle Component Analysis</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540283129</isbn><isbn>9783540283126</isbn><isbn>3540318305</isbn><isbn>9783540318309</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkD9PwzAQxc0_iVKY-AJeGBgCPjuOnRG1KSAV0QHmyI3PJZDEkR0k2k9PoAzcctK9n-7ePUIugd0AY-oWQIpcsqzM-AE5EzJlArRg8pBMIANIhEjzo73AtQCeH5MJE4wnuUrFKbmI8Z2NJUBpnU-IX3zudttkljyh6egcBwxt3WGkwxvSVai7qu4bpDPf9r7DbqArU4dR9bSIQ92aAX_JOW4CIvWOFq0fat9RF3xLF6aqTUOLrz5gjOM4npMTZ5qIF399Sl4XxcvsIVk-3z_O7pZJDwp4YgWrKqmhUlxxZp1xPHNMpVZyrdcotXTWZGiqTNjUcScA1s6qHKXNdaWsmJKr_d7exMo0Lpjxk1j2YfQctuV4REjNYeSu91wcpW6DoVx7_xFLYOVP3OW_uMU31gVt0w</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Amin, M. Ashraful</creator><creator>Afzulpurkar, Nitin V.</creator><creator>Dailey, Matthew N.</creator><creator>Esichaikul, Vatcharaporn</creator><creator>Batanov, Dentcho N.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Fuzzy-C-Mean Determines the Principle Component Pairs to Estimate the Degree of Emotion from Facial Expressions</title><author>Amin, M. Ashraful ; Afzulpurkar, Nitin V. ; Dailey, Matthew N. ; Esichaikul, Vatcharaporn ; Batanov, Dentcho N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1712-d30cc581c72720dfaf26f074d5288be585fda6eac63d4f2f311bfd79e5d98c7d3</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Cluster Center</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Facial Expression</topic><topic>Facial Image</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Principle Component</topic><topic>Principle Component Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amin, M. Ashraful</creatorcontrib><creatorcontrib>Afzulpurkar, Nitin V.</creatorcontrib><creatorcontrib>Dailey, Matthew N.</creatorcontrib><creatorcontrib>Esichaikul, Vatcharaporn</creatorcontrib><creatorcontrib>Batanov, Dentcho N.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amin, M. Ashraful</au><au>Afzulpurkar, Nitin V.</au><au>Dailey, Matthew N.</au><au>Esichaikul, Vatcharaporn</au><au>Batanov, Dentcho N.</au><au>Jin, Yaochu</au><au>Wang, Lipo</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Fuzzy-C-Mean Determines the Principle Component Pairs to Estimate the Degree of Emotion from Facial Expressions</atitle><btitle>Fuzzy Systems and Knowledge Discovery</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>484</spage><epage>493</epage><pages>484-493</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540283129</isbn><isbn>9783540283126</isbn><eisbn>3540318305</eisbn><eisbn>9783540318309</eisbn><abstract>Although many systems exist for automatic classification of faces according to their emotional expression, these systems do not explicitly estimate the strength of given expressions. This paper describes and empirically evaluates an algorithm capable of estimating the degree to which a face expresses a given emotion. The system first aligns and normalizes an input face image, then applies a filter bank of Gabor wavelets and reduces the data’s dimensionality via principal components analysis. Finally, an unsupervised Fuzzy-C-Mean clustering algorithm is employed recursively on the same set of data to find the best pair of principle components from the amount of alignment of the cluster centers on a straight line. The cluster memberships are then mapped to degrees of a facial expression (i.e. less Happy, moderately happy, and very happy). In a test on 54 previously unseen happy faces., we find an orderly mapping of faces to clusters as the subject’s face moves from a neutral to very happy emotional display. Similar results are observed on 78 previously unseen surprised faces.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11539506_62</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Fuzzy Systems and Knowledge Discovery, 2005, p.484-493 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17135821 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Cluster Center Computer science control theory systems Exact sciences and technology Facial Expression Facial Image Pattern recognition. Digital image processing. Computational geometry Principle Component Principle Component Analysis |
title | Fuzzy-C-Mean Determines the Principle Component Pairs to Estimate the Degree of Emotion from Facial Expressions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A56%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Fuzzy-C-Mean%20Determines%20the%20Principle%20Component%20Pairs%20to%20Estimate%20the%20Degree%20of%20Emotion%20from%20Facial%20Expressions&rft.btitle=Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Amin,%20M.%20Ashraful&rft.date=2005&rft.spage=484&rft.epage=493&rft.pages=484-493&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540283129&rft.isbn_list=9783540283126&rft_id=info:doi/10.1007/11539506_62&rft_dat=%3Cpascalfrancis_sprin%3E17135821%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318305&rft.eisbn_list=9783540318309&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |