Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model
This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | |
container_start_page | 129 |
container_title | |
container_volume | |
creator | Yang, Xiaohua Yang, Zhifeng Shen, Zhenyao Lu, Guihua |
description | This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded genetic algorithm and Hooke-Jeeves algorithm. With the shrinking of searching range, the method gradually directs to optimal result with the excellent individuals obtained by Gray genetic algorithm embedding the Hooke-Jeeves searching operator. The convergence and global optimization of the new genetic algorithm are analyzed. Its global convergence rate is 100%, and the computational velocity is fast for five test functions. And it is efficient for the global optimization in the practical water environmental model on wastewater treatment. |
doi_str_mv | 10.1007/11539902_15 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17135586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17135586</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-fe31d7fec5620c14f1e291d5b3f9bae1c6df0c014b6e9a09553ff47858f680c33</originalsourceid><addsrcrecordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfnmxE48VKilSURcQY-Q4djAkduVESOXXk6oM3OUO9-gOh5AbYPfAWP4AwFFKllbAT8gV8owhFALhlMxAACSImTwjC5kXhy0tMGVwTmYMWZrIPMNLshiGTzYFQbBUzEhbRrVPVl6HxjR0va-ja-hSa9OZqEbnW1oab0an6bJrQ3TjR09tiLTsQq06ut2Nrnc_Exk8DZa-q9FEuvLfLgbfGz9OzMt03V2TC6u6wSz-ek7enlavj-tksy2fH5ebZJeCHBNrEJrcGs1FyjRkFkwqoeE1WlkrA1o0lmkGWS2MVExyjtZmecELKwqmEefk9vi7U4NWnY3KazdUu-h6FfcV5ICcT8rm5O7IDdPkWxOrOoSvoQJWHUxX_0zjL0H8a74</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model</title><source>Springer Books</source><creator>Yang, Xiaohua ; Yang, Zhifeng ; Shen, Zhenyao ; Lu, Guihua</creator><contributor>Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</contributor><creatorcontrib>Yang, Xiaohua ; Yang, Zhifeng ; Shen, Zhenyao ; Lu, Guihua ; Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</creatorcontrib><description>This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded genetic algorithm and Hooke-Jeeves algorithm. With the shrinking of searching range, the method gradually directs to optimal result with the excellent individuals obtained by Gray genetic algorithm embedding the Hooke-Jeeves searching operator. The convergence and global optimization of the new genetic algorithm are analyzed. Its global convergence rate is 100%, and the computational velocity is fast for five test functions. And it is efficient for the global optimization in the practical water environmental model on wastewater treatment.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540283201</identifier><identifier>ISBN: 354028320X</identifier><identifier>ISBN: 3540283234</identifier><identifier>ISBN: 9783540283232</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318631</identifier><identifier>EISBN: 9783540318637</identifier><identifier>DOI: 10.1007/11539902_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Test Function ; Applied sciences ; Artificial intelligence ; Computational Amount ; Computer science; control theory; systems ; Exact sciences and technology ; Excellent Individual ; Genetic Algorithm ; Global Optimization</subject><ispartof>Advances in Natural Computation, 2005, p.129-136</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11539902_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11539902_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17135586$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ong, Yew Soon</contributor><contributor>Chen, Ke</contributor><contributor>Wang, Lipo</contributor><creatorcontrib>Yang, Xiaohua</creatorcontrib><creatorcontrib>Yang, Zhifeng</creatorcontrib><creatorcontrib>Shen, Zhenyao</creatorcontrib><creatorcontrib>Lu, Guihua</creatorcontrib><title>Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model</title><title>Advances in Natural Computation</title><description>This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded genetic algorithm and Hooke-Jeeves algorithm. With the shrinking of searching range, the method gradually directs to optimal result with the excellent individuals obtained by Gray genetic algorithm embedding the Hooke-Jeeves searching operator. The convergence and global optimization of the new genetic algorithm are analyzed. Its global convergence rate is 100%, and the computational velocity is fast for five test functions. And it is efficient for the global optimization in the practical water environmental model on wastewater treatment.</description><subject>Analytical Test Function</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational Amount</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Excellent Individual</subject><subject>Genetic Algorithm</subject><subject>Global Optimization</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540283201</isbn><isbn>354028320X</isbn><isbn>3540283234</isbn><isbn>9783540283232</isbn><isbn>3540318631</isbn><isbn>9783540318637</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfnmxE48VKilSURcQY-Q4djAkduVESOXXk6oM3OUO9-gOh5AbYPfAWP4AwFFKllbAT8gV8owhFALhlMxAACSImTwjC5kXhy0tMGVwTmYMWZrIPMNLshiGTzYFQbBUzEhbRrVPVl6HxjR0va-ja-hSa9OZqEbnW1oab0an6bJrQ3TjR09tiLTsQq06ut2Nrnc_Exk8DZa-q9FEuvLfLgbfGz9OzMt03V2TC6u6wSz-ek7enlavj-tksy2fH5ebZJeCHBNrEJrcGs1FyjRkFkwqoeE1WlkrA1o0lmkGWS2MVExyjtZmecELKwqmEefk9vi7U4NWnY3KazdUu-h6FfcV5ICcT8rm5O7IDdPkWxOrOoSvoQJWHUxX_0zjL0H8a74</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Yang, Xiaohua</creator><creator>Yang, Zhifeng</creator><creator>Shen, Zhenyao</creator><creator>Lu, Guihua</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model</title><author>Yang, Xiaohua ; Yang, Zhifeng ; Shen, Zhenyao ; Lu, Guihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-fe31d7fec5620c14f1e291d5b3f9bae1c6df0c014b6e9a09553ff47858f680c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analytical Test Function</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational Amount</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Excellent Individual</topic><topic>Genetic Algorithm</topic><topic>Global Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaohua</creatorcontrib><creatorcontrib>Yang, Zhifeng</creatorcontrib><creatorcontrib>Shen, Zhenyao</creatorcontrib><creatorcontrib>Lu, Guihua</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaohua</au><au>Yang, Zhifeng</au><au>Shen, Zhenyao</au><au>Lu, Guihua</au><au>Ong, Yew Soon</au><au>Chen, Ke</au><au>Wang, Lipo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model</atitle><btitle>Advances in Natural Computation</btitle><date>2005</date><risdate>2005</risdate><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540283201</isbn><isbn>354028320X</isbn><isbn>3540283234</isbn><isbn>9783540283232</isbn><eisbn>3540318631</eisbn><eisbn>9783540318637</eisbn><abstract>This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded genetic algorithm and Hooke-Jeeves algorithm. With the shrinking of searching range, the method gradually directs to optimal result with the excellent individuals obtained by Gray genetic algorithm embedding the Hooke-Jeeves searching operator. The convergence and global optimization of the new genetic algorithm are analyzed. Its global convergence rate is 100%, and the computational velocity is fast for five test functions. And it is efficient for the global optimization in the practical water environmental model on wastewater treatment.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11539902_15</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Natural Computation, 2005, p.129-136 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17135586 |
source | Springer Books |
subjects | Analytical Test Function Applied sciences Artificial intelligence Computational Amount Computer science control theory systems Exact sciences and technology Excellent Individual Genetic Algorithm Global Optimization |
title | Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gray-Encoded%20Hybrid%20Accelerating%20Genetic%20Algorithm%20for%20Global%20Optimization%20of%20Water%20Environmental%20Model&rft.btitle=Advances%20in%20Natural%20Computation&rft.au=Yang,%20Xiaohua&rft.date=2005&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540283201&rft.isbn_list=354028320X&rft.isbn_list=3540283234&rft.isbn_list=9783540283232&rft_id=info:doi/10.1007/11539902_15&rft_dat=%3Cpascalfrancis_sprin%3E17135586%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318631&rft.eisbn_list=9783540318637&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |