Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model

This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang, Xiaohua, Yang, Zhifeng, Shen, Zhenyao, Lu, Guihua
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 129
container_title
container_volume
creator Yang, Xiaohua
Yang, Zhifeng
Shen, Zhenyao
Lu, Guihua
description This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded genetic algorithm and Hooke-Jeeves algorithm. With the shrinking of searching range, the method gradually directs to optimal result with the excellent individuals obtained by Gray genetic algorithm embedding the Hooke-Jeeves searching operator. The convergence and global optimization of the new genetic algorithm are analyzed. Its global convergence rate is 100%, and the computational velocity is fast for five test functions. And it is efficient for the global optimization in the practical water environmental model on wastewater treatment.
doi_str_mv 10.1007/11539902_15
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17135586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17135586</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-fe31d7fec5620c14f1e291d5b3f9bae1c6df0c014b6e9a09553ff47858f680c33</originalsourceid><addsrcrecordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfnmxE48VKilSURcQY-Q4djAkduVESOXXk6oM3OUO9-gOh5AbYPfAWP4AwFFKllbAT8gV8owhFALhlMxAACSImTwjC5kXhy0tMGVwTmYMWZrIPMNLshiGTzYFQbBUzEhbRrVPVl6HxjR0va-ja-hSa9OZqEbnW1oab0an6bJrQ3TjR09tiLTsQq06ut2Nrnc_Exk8DZa-q9FEuvLfLgbfGz9OzMt03V2TC6u6wSz-ek7enlavj-tksy2fH5ebZJeCHBNrEJrcGs1FyjRkFkwqoeE1WlkrA1o0lmkGWS2MVExyjtZmecELKwqmEefk9vi7U4NWnY3KazdUu-h6FfcV5ICcT8rm5O7IDdPkWxOrOoSvoQJWHUxX_0zjL0H8a74</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model</title><source>Springer Books</source><creator>Yang, Xiaohua ; Yang, Zhifeng ; Shen, Zhenyao ; Lu, Guihua</creator><contributor>Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</contributor><creatorcontrib>Yang, Xiaohua ; Yang, Zhifeng ; Shen, Zhenyao ; Lu, Guihua ; Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</creatorcontrib><description>This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded genetic algorithm and Hooke-Jeeves algorithm. With the shrinking of searching range, the method gradually directs to optimal result with the excellent individuals obtained by Gray genetic algorithm embedding the Hooke-Jeeves searching operator. The convergence and global optimization of the new genetic algorithm are analyzed. Its global convergence rate is 100%, and the computational velocity is fast for five test functions. And it is efficient for the global optimization in the practical water environmental model on wastewater treatment.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540283201</identifier><identifier>ISBN: 354028320X</identifier><identifier>ISBN: 3540283234</identifier><identifier>ISBN: 9783540283232</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318631</identifier><identifier>EISBN: 9783540318637</identifier><identifier>DOI: 10.1007/11539902_15</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Test Function ; Applied sciences ; Artificial intelligence ; Computational Amount ; Computer science; control theory; systems ; Exact sciences and technology ; Excellent Individual ; Genetic Algorithm ; Global Optimization</subject><ispartof>Advances in Natural Computation, 2005, p.129-136</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11539902_15$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11539902_15$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17135586$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ong, Yew Soon</contributor><contributor>Chen, Ke</contributor><contributor>Wang, Lipo</contributor><creatorcontrib>Yang, Xiaohua</creatorcontrib><creatorcontrib>Yang, Zhifeng</creatorcontrib><creatorcontrib>Shen, Zhenyao</creatorcontrib><creatorcontrib>Lu, Guihua</creatorcontrib><title>Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model</title><title>Advances in Natural Computation</title><description>This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded genetic algorithm and Hooke-Jeeves algorithm. With the shrinking of searching range, the method gradually directs to optimal result with the excellent individuals obtained by Gray genetic algorithm embedding the Hooke-Jeeves searching operator. The convergence and global optimization of the new genetic algorithm are analyzed. Its global convergence rate is 100%, and the computational velocity is fast for five test functions. And it is efficient for the global optimization in the practical water environmental model on wastewater treatment.</description><subject>Analytical Test Function</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational Amount</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Excellent Individual</subject><subject>Genetic Algorithm</subject><subject>Global Optimization</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540283201</isbn><isbn>354028320X</isbn><isbn>3540283234</isbn><isbn>9783540283232</isbn><isbn>3540318631</isbn><isbn>9783540318637</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAURc2XRCmd-ANeGBgCfnmxE48VKilSURcQY-Q4djAkduVESOXXk6oM3OUO9-gOh5AbYPfAWP4AwFFKllbAT8gV8owhFALhlMxAACSImTwjC5kXhy0tMGVwTmYMWZrIPMNLshiGTzYFQbBUzEhbRrVPVl6HxjR0va-ja-hSa9OZqEbnW1oab0an6bJrQ3TjR09tiLTsQq06ut2Nrnc_Exk8DZa-q9FEuvLfLgbfGz9OzMt03V2TC6u6wSz-ek7enlavj-tksy2fH5ebZJeCHBNrEJrcGs1FyjRkFkwqoeE1WlkrA1o0lmkGWS2MVExyjtZmecELKwqmEefk9vi7U4NWnY3KazdUu-h6FfcV5ICcT8rm5O7IDdPkWxOrOoSvoQJWHUxX_0zjL0H8a74</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Yang, Xiaohua</creator><creator>Yang, Zhifeng</creator><creator>Shen, Zhenyao</creator><creator>Lu, Guihua</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model</title><author>Yang, Xiaohua ; Yang, Zhifeng ; Shen, Zhenyao ; Lu, Guihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-fe31d7fec5620c14f1e291d5b3f9bae1c6df0c014b6e9a09553ff47858f680c33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Analytical Test Function</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational Amount</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Excellent Individual</topic><topic>Genetic Algorithm</topic><topic>Global Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Xiaohua</creatorcontrib><creatorcontrib>Yang, Zhifeng</creatorcontrib><creatorcontrib>Shen, Zhenyao</creatorcontrib><creatorcontrib>Lu, Guihua</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Xiaohua</au><au>Yang, Zhifeng</au><au>Shen, Zhenyao</au><au>Lu, Guihua</au><au>Ong, Yew Soon</au><au>Chen, Ke</au><au>Wang, Lipo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model</atitle><btitle>Advances in Natural Computation</btitle><date>2005</date><risdate>2005</risdate><spage>129</spage><epage>136</epage><pages>129-136</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540283201</isbn><isbn>354028320X</isbn><isbn>3540283234</isbn><isbn>9783540283232</isbn><eisbn>3540318631</eisbn><eisbn>9783540318637</eisbn><abstract>This improved algorithm, Gray-encoded hybrid accelerating genetic algorithm (GHAGA), is presented to reduce computational amount and to improve the computational accuracy for the global optimization of water environmental models. The hybrid method combines two algorithms, which are the Gray-encoded genetic algorithm and Hooke-Jeeves algorithm. With the shrinking of searching range, the method gradually directs to optimal result with the excellent individuals obtained by Gray genetic algorithm embedding the Hooke-Jeeves searching operator. The convergence and global optimization of the new genetic algorithm are analyzed. Its global convergence rate is 100%, and the computational velocity is fast for five test functions. And it is efficient for the global optimization in the practical water environmental model on wastewater treatment.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11539902_15</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Natural Computation, 2005, p.129-136
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17135586
source Springer Books
subjects Analytical Test Function
Applied sciences
Artificial intelligence
Computational Amount
Computer science
control theory
systems
Exact sciences and technology
Excellent Individual
Genetic Algorithm
Global Optimization
title Gray-Encoded Hybrid Accelerating Genetic Algorithm for Global Optimization of Water Environmental Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gray-Encoded%20Hybrid%20Accelerating%20Genetic%20Algorithm%20for%20Global%20Optimization%20of%20Water%20Environmental%20Model&rft.btitle=Advances%20in%20Natural%20Computation&rft.au=Yang,%20Xiaohua&rft.date=2005&rft.spage=129&rft.epage=136&rft.pages=129-136&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540283201&rft.isbn_list=354028320X&rft.isbn_list=3540283234&rft.isbn_list=9783540283232&rft_id=info:doi/10.1007/11539902_15&rft_dat=%3Cpascalfrancis_sprin%3E17135586%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318631&rft.eisbn_list=9783540318637&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true