Automatic Liver Segmentation of Contrast Enhanced CT Images Based on Histogram Processing

Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of neighboring organs in the abdomen. In this paper, an automatic liver segmentation method using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seo, Kyung-Sik, Kim, Hyung-Bum, Park, Taesu, Kim, Pan-Koo, Park, Jong-An
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1030
container_issue
container_start_page 1027
container_title
container_volume
creator Seo, Kyung-Sik
Kim, Hyung-Bum
Park, Taesu
Kim, Pan-Koo
Park, Jong-An
description Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of neighboring organs in the abdomen. In this paper, an automatic liver segmentation method using histogram processing is proposed for overcoming randomness of CE-CT images and removing other abdominal organs. Forty CE-CT slices of ten patients were selected to evaluate the proposed method. As the evaluation measure, the normalized average area and area error rate were used. From the results of experiments, liver segmentation using histogram process has similar performance as the manual method by medical doctor.
doi_str_mv 10.1007/11539087_135
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17135505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17135505</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-f53da6a7b4fef92a2a4645b6414d99070c92b67b0ba5f8bfeaeabbb93db8e1193</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhtcvsK3e_AF78SJEZ7-y2WMNVQsFBevBU5hNd2O0yZbdKPjvjdSDp-Gd92EYHkIuGFwzAH3DmBIGCl0xoQ7IVCgJghVKyEMyYTljmRDSHO0LXggu5DGZgACeGS3FKZmm9A4AXBs-Ia_zzyF0OLQ1XbVfLtJn13SuH8ZN6GnwtAz9EDENdNG_YV-7DS3XdNlh4xK9xTTmkXto0xCaiB19iqF2KbV9c0ZOPG6TO_-bM_Jyt1iXD9nq8X5ZzlfZjnMYMq_EBnPUVnrnDUeOMpfK5pLJjTGgoTbc5tqCReUL6x06tNYasbGFY8yIGbnc391hqnHr4_hlm6pdbDuM3xXToyYFauSu9lwaq75xsbIhfKSKQfWrtfqvVfwAk-FmEQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Liver Segmentation of Contrast Enhanced CT Images Based on Histogram Processing</title><source>Springer Books</source><creator>Seo, Kyung-Sik ; Kim, Hyung-Bum ; Park, Taesu ; Kim, Pan-Koo ; Park, Jong-An</creator><contributor>Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</contributor><creatorcontrib>Seo, Kyung-Sik ; Kim, Hyung-Bum ; Park, Taesu ; Kim, Pan-Koo ; Park, Jong-An ; Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</creatorcontrib><description>Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of neighboring organs in the abdomen. In this paper, an automatic liver segmentation method using histogram processing is proposed for overcoming randomness of CE-CT images and removing other abdominal organs. Forty CE-CT slices of ten patients were selected to evaluate the proposed method. As the evaluation measure, the normalized average area and area error rate were used. From the results of experiments, liver segmentation using histogram process has similar performance as the manual method by medical doctor.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540283234</identifier><identifier>ISBN: 9783540283232</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540318534</identifier><identifier>EISBN: 9783540318538</identifier><identifier>DOI: 10.1007/11539087_135</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abdominal Organ ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Contrast Enhanced Compute Tomography ; Exact sciences and technology ; Liver Region ; Manual Segmentation ; Neighboring Organ</subject><ispartof>Advances in Natural Computation, 2005, p.1027-1030</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11539087_135$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11539087_135$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,781,782,786,791,792,795,4052,4053,27932,38262,41449,42518</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17135505$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ong, Yew Soon</contributor><contributor>Chen, Ke</contributor><contributor>Wang, Lipo</contributor><creatorcontrib>Seo, Kyung-Sik</creatorcontrib><creatorcontrib>Kim, Hyung-Bum</creatorcontrib><creatorcontrib>Park, Taesu</creatorcontrib><creatorcontrib>Kim, Pan-Koo</creatorcontrib><creatorcontrib>Park, Jong-An</creatorcontrib><title>Automatic Liver Segmentation of Contrast Enhanced CT Images Based on Histogram Processing</title><title>Advances in Natural Computation</title><description>Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of neighboring organs in the abdomen. In this paper, an automatic liver segmentation method using histogram processing is proposed for overcoming randomness of CE-CT images and removing other abdominal organs. Forty CE-CT slices of ten patients were selected to evaluate the proposed method. As the evaluation measure, the normalized average area and area error rate were used. From the results of experiments, liver segmentation using histogram process has similar performance as the manual method by medical doctor.</description><subject>Abdominal Organ</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Contrast Enhanced Compute Tomography</subject><subject>Exact sciences and technology</subject><subject>Liver Region</subject><subject>Manual Segmentation</subject><subject>Neighboring Organ</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540283234</isbn><isbn>9783540283232</isbn><isbn>3540318534</isbn><isbn>9783540318538</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkE1Lw0AQhtcvsK3e_AF78SJEZ7-y2WMNVQsFBevBU5hNd2O0yZbdKPjvjdSDp-Gd92EYHkIuGFwzAH3DmBIGCl0xoQ7IVCgJghVKyEMyYTljmRDSHO0LXggu5DGZgACeGS3FKZmm9A4AXBs-Ia_zzyF0OLQ1XbVfLtJn13SuH8ZN6GnwtAz9EDENdNG_YV-7DS3XdNlh4xK9xTTmkXto0xCaiB19iqF2KbV9c0ZOPG6TO_-bM_Jyt1iXD9nq8X5ZzlfZjnMYMq_EBnPUVnrnDUeOMpfK5pLJjTGgoTbc5tqCReUL6x06tNYasbGFY8yIGbnc391hqnHr4_hlm6pdbDuM3xXToyYFauSu9lwaq75xsbIhfKSKQfWrtfqvVfwAk-FmEQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Seo, Kyung-Sik</creator><creator>Kim, Hyung-Bum</creator><creator>Park, Taesu</creator><creator>Kim, Pan-Koo</creator><creator>Park, Jong-An</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Automatic Liver Segmentation of Contrast Enhanced CT Images Based on Histogram Processing</title><author>Seo, Kyung-Sik ; Kim, Hyung-Bum ; Park, Taesu ; Kim, Pan-Koo ; Park, Jong-An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-f53da6a7b4fef92a2a4645b6414d99070c92b67b0ba5f8bfeaeabbb93db8e1193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Abdominal Organ</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Contrast Enhanced Compute Tomography</topic><topic>Exact sciences and technology</topic><topic>Liver Region</topic><topic>Manual Segmentation</topic><topic>Neighboring Organ</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seo, Kyung-Sik</creatorcontrib><creatorcontrib>Kim, Hyung-Bum</creatorcontrib><creatorcontrib>Park, Taesu</creatorcontrib><creatorcontrib>Kim, Pan-Koo</creatorcontrib><creatorcontrib>Park, Jong-An</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seo, Kyung-Sik</au><au>Kim, Hyung-Bum</au><au>Park, Taesu</au><au>Kim, Pan-Koo</au><au>Park, Jong-An</au><au>Ong, Yew Soon</au><au>Chen, Ke</au><au>Wang, Lipo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Liver Segmentation of Contrast Enhanced CT Images Based on Histogram Processing</atitle><btitle>Advances in Natural Computation</btitle><date>2005</date><risdate>2005</risdate><spage>1027</spage><epage>1030</epage><pages>1027-1030</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540283234</isbn><isbn>9783540283232</isbn><eisbn>3540318534</eisbn><eisbn>9783540318538</eisbn><abstract>Pixel values of contrast enhanced computed tomography (CE-CT) images are randomly changed. Also, the middle liver part has a problem to segregate the liver structure because of similar gray-level values of neighboring organs in the abdomen. In this paper, an automatic liver segmentation method using histogram processing is proposed for overcoming randomness of CE-CT images and removing other abdominal organs. Forty CE-CT slices of ten patients were selected to evaluate the proposed method. As the evaluation measure, the normalized average area and area error rate were used. From the results of experiments, liver segmentation using histogram process has similar performance as the manual method by medical doctor.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11539087_135</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Natural Computation, 2005, p.1027-1030
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17135505
source Springer Books
subjects Abdominal Organ
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Contrast Enhanced Compute Tomography
Exact sciences and technology
Liver Region
Manual Segmentation
Neighboring Organ
title Automatic Liver Segmentation of Contrast Enhanced CT Images Based on Histogram Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Liver%20Segmentation%20of%20Contrast%20Enhanced%20CT%20Images%20Based%20on%20Histogram%20Processing&rft.btitle=Advances%20in%20Natural%20Computation&rft.au=Seo,%20Kyung-Sik&rft.date=2005&rft.spage=1027&rft.epage=1030&rft.pages=1027-1030&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540283234&rft.isbn_list=9783540283232&rft_id=info:doi/10.1007/11539087_135&rft_dat=%3Cpascalfrancis_sprin%3E17135505%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540318534&rft.eisbn_list=9783540318538&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true