Conceptual Modeling with Neural Network for Giftedness Identification and Education

Today, gifted and talented education becomes an important part of school education. All school staff has increased awareness and knowledge about that. They develop a special program for identification of gifted student and a curriculum for them. In addition, existing gifted education pays too much a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Im, Kwang Hyuk, Kim, Tae Hyun, Bae, SungMin, Park, Sang Chan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue
container_start_page 530
container_title
container_volume
creator Im, Kwang Hyuk
Kim, Tae Hyun
Bae, SungMin
Park, Sang Chan
description Today, gifted and talented education becomes an important part of school education. All school staff has increased awareness and knowledge about that. They develop a special program for identification of gifted student and a curriculum for them. In addition, existing gifted education pays too much attention to their curriculum, such as a curriculum compacting, acceleration, and an ability clustering. Currently, the identification of gifted student mainly depends on a simple identification test based on their age. But, the test results could not reveal the “potentially gifted” students. In this paper, we proposed a neural network model for identification of gifted student. With a specially designed questionnaire, we measure implicit capabilities of giftedness and cluster the students with similar characteristics. The neural network and data mining techniques are applied to extract a type of giftedness and their characteristics. To evaluate our model, we apply our model to the science and liberal art filed in Korea to identify gifted student and their type of giftedness.
doi_str_mv 10.1007/11539117_76
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17135376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17135376</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-2fda94916c48219a69f39048bfa69cbf224fd66717fbf640e15c51df81571f7a3</originalsourceid><addsrcrecordid>eNpNUD1PwzAUNF8SVenEH_DCwBDw82c8ogpKpVIGYI6c2C6mwYnsVBX_nqAixC3v3t3phkPoEsgNEKJuAQTTAKpS8gjNtCqZ4IRBKUp2jCYgAQrGuD7582jJqJCnaEIYoYVWnJ2jWc4fZAQDSaiYoJd5FxvXDzvT4qfOujbEDd6H4R2v3S6N4toN-y5tse8SXgQ_OBtdznhpXRyCD40ZQhexiRbf293hu0Bn3rTZzX7vFL093L_OH4vV82I5v1sVPQU9FNRbo7kG2fByFIzUnmnCy9qPtKk9pdxbKRUoX3vJiQPRCLC-BKHAK8Om6OrQ25vcmNYnE5uQqz6FT5O-KlDABFNyzF0fcnm04salqu66ba6AVD_DVv-GZd_-Y2T_</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Conceptual Modeling with Neural Network for Giftedness Identification and Education</title><source>Springer Books</source><creator>Im, Kwang Hyuk ; Kim, Tae Hyun ; Bae, SungMin ; Park, Sang Chan</creator><contributor>Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</contributor><creatorcontrib>Im, Kwang Hyuk ; Kim, Tae Hyun ; Bae, SungMin ; Park, Sang Chan ; Ong, Yew Soon ; Chen, Ke ; Wang, Lipo</creatorcontrib><description>Today, gifted and talented education becomes an important part of school education. All school staff has increased awareness and knowledge about that. They develop a special program for identification of gifted student and a curriculum for them. In addition, existing gifted education pays too much attention to their curriculum, such as a curriculum compacting, acceleration, and an ability clustering. Currently, the identification of gifted student mainly depends on a simple identification test based on their age. But, the test results could not reveal the “potentially gifted” students. In this paper, we proposed a neural network model for identification of gifted student. With a specially designed questionnaire, we measure implicit capabilities of giftedness and cluster the students with similar characteristics. The neural network and data mining techniques are applied to extract a type of giftedness and their characteristics. To evaluate our model, we apply our model to the science and liberal art filed in Korea to identify gifted student and their type of giftedness.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540283256</identifier><identifier>ISBN: 3540283250</identifier><identifier>ISBN: 3540283234</identifier><identifier>ISBN: 9783540283232</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318583</identifier><identifier>EISBN: 3540318585</identifier><identifier>DOI: 10.1007/11539117_76</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Data processing. List processing. Character string processing ; Exact sciences and technology ; Memory organisation. Data processing ; Software</subject><ispartof>Advances in Natural Computation, 2005, p.530-538</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11539117_76$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11539117_76$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17135376$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Ong, Yew Soon</contributor><contributor>Chen, Ke</contributor><contributor>Wang, Lipo</contributor><creatorcontrib>Im, Kwang Hyuk</creatorcontrib><creatorcontrib>Kim, Tae Hyun</creatorcontrib><creatorcontrib>Bae, SungMin</creatorcontrib><creatorcontrib>Park, Sang Chan</creatorcontrib><title>Conceptual Modeling with Neural Network for Giftedness Identification and Education</title><title>Advances in Natural Computation</title><description>Today, gifted and talented education becomes an important part of school education. All school staff has increased awareness and knowledge about that. They develop a special program for identification of gifted student and a curriculum for them. In addition, existing gifted education pays too much attention to their curriculum, such as a curriculum compacting, acceleration, and an ability clustering. Currently, the identification of gifted student mainly depends on a simple identification test based on their age. But, the test results could not reveal the “potentially gifted” students. In this paper, we proposed a neural network model for identification of gifted student. With a specially designed questionnaire, we measure implicit capabilities of giftedness and cluster the students with similar characteristics. The neural network and data mining techniques are applied to extract a type of giftedness and their characteristics. To evaluate our model, we apply our model to the science and liberal art filed in Korea to identify gifted student and their type of giftedness.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Data processing. List processing. Character string processing</subject><subject>Exact sciences and technology</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540283256</isbn><isbn>3540283250</isbn><isbn>3540283234</isbn><isbn>9783540283232</isbn><isbn>9783540318583</isbn><isbn>3540318585</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUD1PwzAUNF8SVenEH_DCwBDw82c8ogpKpVIGYI6c2C6mwYnsVBX_nqAixC3v3t3phkPoEsgNEKJuAQTTAKpS8gjNtCqZ4IRBKUp2jCYgAQrGuD7582jJqJCnaEIYoYVWnJ2jWc4fZAQDSaiYoJd5FxvXDzvT4qfOujbEDd6H4R2v3S6N4toN-y5tse8SXgQ_OBtdznhpXRyCD40ZQhexiRbf293hu0Bn3rTZzX7vFL093L_OH4vV82I5v1sVPQU9FNRbo7kG2fByFIzUnmnCy9qPtKk9pdxbKRUoX3vJiQPRCLC-BKHAK8Om6OrQ25vcmNYnE5uQqz6FT5O-KlDABFNyzF0fcnm04salqu66ba6AVD_DVv-GZd_-Y2T_</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Im, Kwang Hyuk</creator><creator>Kim, Tae Hyun</creator><creator>Bae, SungMin</creator><creator>Park, Sang Chan</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Conceptual Modeling with Neural Network for Giftedness Identification and Education</title><author>Im, Kwang Hyuk ; Kim, Tae Hyun ; Bae, SungMin ; Park, Sang Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-2fda94916c48219a69f39048bfa69cbf224fd66717fbf640e15c51df81571f7a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Data processing. List processing. Character string processing</topic><topic>Exact sciences and technology</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Im, Kwang Hyuk</creatorcontrib><creatorcontrib>Kim, Tae Hyun</creatorcontrib><creatorcontrib>Bae, SungMin</creatorcontrib><creatorcontrib>Park, Sang Chan</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Im, Kwang Hyuk</au><au>Kim, Tae Hyun</au><au>Bae, SungMin</au><au>Park, Sang Chan</au><au>Ong, Yew Soon</au><au>Chen, Ke</au><au>Wang, Lipo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Conceptual Modeling with Neural Network for Giftedness Identification and Education</atitle><btitle>Advances in Natural Computation</btitle><date>2005</date><risdate>2005</risdate><spage>530</spage><epage>538</epage><pages>530-538</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540283256</isbn><isbn>3540283250</isbn><isbn>3540283234</isbn><isbn>9783540283232</isbn><eisbn>9783540318583</eisbn><eisbn>3540318585</eisbn><abstract>Today, gifted and talented education becomes an important part of school education. All school staff has increased awareness and knowledge about that. They develop a special program for identification of gifted student and a curriculum for them. In addition, existing gifted education pays too much attention to their curriculum, such as a curriculum compacting, acceleration, and an ability clustering. Currently, the identification of gifted student mainly depends on a simple identification test based on their age. But, the test results could not reveal the “potentially gifted” students. In this paper, we proposed a neural network model for identification of gifted student. With a specially designed questionnaire, we measure implicit capabilities of giftedness and cluster the students with similar characteristics. The neural network and data mining techniques are applied to extract a type of giftedness and their characteristics. To evaluate our model, we apply our model to the science and liberal art filed in Korea to identify gifted student and their type of giftedness.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11539117_76</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Natural Computation, 2005, p.530-538
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17135376
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Data processing. List processing. Character string processing
Exact sciences and technology
Memory organisation. Data processing
Software
title Conceptual Modeling with Neural Network for Giftedness Identification and Education
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Conceptual%20Modeling%20with%20Neural%20Network%20for%20Giftedness%20Identification%20and%20Education&rft.btitle=Advances%20in%20Natural%20Computation&rft.au=Im,%20Kwang%20Hyuk&rft.date=2005&rft.spage=530&rft.epage=538&rft.pages=530-538&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540283256&rft.isbn_list=3540283250&rft.isbn_list=3540283234&rft.isbn_list=9783540283232&rft_id=info:doi/10.1007/11539117_76&rft_dat=%3Cpascalfrancis_sprin%3E17135376%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318583&rft.eisbn_list=3540318585&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true