Direct Candidates Generation: A Novel Algorithm for Discovering Complete Share-Frequent Itemsets

The value of the itemset share is one way of evaluating the magnitude of an itemset. From business perspective, itemset share values reflect more the significance of itemsets for mining association rules in a database. The Share-counted FSM (ShFSM) algorithm is one of the best algorithms which can d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Yu-Chiang, Yeh, Jieh-Shan, Chang, Chin-Chen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue
container_start_page 551
container_title
container_volume
creator Li, Yu-Chiang
Yeh, Jieh-Shan
Chang, Chin-Chen
description The value of the itemset share is one way of evaluating the magnitude of an itemset. From business perspective, itemset share values reflect more the significance of itemsets for mining association rules in a database. The Share-counted FSM (ShFSM) algorithm is one of the best algorithms which can discover all share-frequent itemsets efficiently. However, ShFSM wastes the computation time on the join and the prune steps of candidate generation in each pass, and generates too many useless candidates. Therefore, this study proposes the Direct Candidates Generation (DCG) algorithm to directly generate candidates without the prune and the join steps in each pass. Moreover, the number of candidates generated by DCG is less than that by ShFSM. Experimental results reveal that the proposed method performs significantly better than ShFSM.
doi_str_mv 10.1007/11540007_67
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17135260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17135260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-7414bd788ee0f5308edc43355894639d6a984a8cc6b0f534275c9fc0e048059e3</originalsourceid><addsrcrecordid>eNpNUDtPwzAYNC-JUjrxB7wwMATs-M1WpbRUqmAA5uA6X9pAXtgGiX9PIhiY7rvvTqfTIXRByTUlRN1QKjgZjlyqAzQzSrOBM6pTLQ_RhEpKE8a4OUJno5Bqxqg4RhPCSJoYxdkpmoXwNiQQbhjh6QS9LioPLuLMtkVV2AgBr6AFb2PVtbd4jh-6L6jxvN51vor7Bpedx4squOHtq3aHs67pa4iAn_bWQ7L08PEJbcTrCE2AGM7RSWnrALM_nKKX5d1zdp9sHlfrbL5JXCppTBSnfFsorQFIKRjRUDjOmBDacMlMIa3R3Grn5HbUeaqEM6UjQLgmwgCbosvf3N4GZ-vS29ZVIe991Vj_nVNFmUglGXxXv77Qj_3B59uuew85Jfk4cf5vYvYDPXBn6Q</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Direct Candidates Generation: A Novel Algorithm for Discovering Complete Share-Frequent Itemsets</title><source>Springer Books</source><creator>Li, Yu-Chiang ; Yeh, Jieh-Shan ; Chang, Chin-Chen</creator><contributor>Jin, Yaochu ; Wang, Lipo</contributor><creatorcontrib>Li, Yu-Chiang ; Yeh, Jieh-Shan ; Chang, Chin-Chen ; Jin, Yaochu ; Wang, Lipo</creatorcontrib><description>The value of the itemset share is one way of evaluating the magnitude of an itemset. From business perspective, itemset share values reflect more the significance of itemsets for mining association rules in a database. The Share-counted FSM (ShFSM) algorithm is one of the best algorithms which can discover all share-frequent itemsets efficiently. However, ShFSM wastes the computation time on the join and the prune steps of candidate generation in each pass, and generates too many useless candidates. Therefore, this study proposes the Direct Candidates Generation (DCG) algorithm to directly generate candidates without the prune and the join steps in each pass. Moreover, the number of candidates generated by DCG is less than that by ShFSM. Experimental results reveal that the proposed method performs significantly better than ShFSM.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540283315</identifier><identifier>ISBN: 9783540283317</identifier><identifier>ISBN: 3540283129</identifier><identifier>ISBN: 9783540283126</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318286</identifier><identifier>EISBN: 3540318283</identifier><identifier>DOI: 10.1007/11540007_67</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology</subject><ispartof>Fuzzy Systems and Knowledge Discovery, 2005, p.551-560</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-7414bd788ee0f5308edc43355894639d6a984a8cc6b0f534275c9fc0e048059e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11540007_67$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11540007_67$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17135260$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Jin, Yaochu</contributor><contributor>Wang, Lipo</contributor><creatorcontrib>Li, Yu-Chiang</creatorcontrib><creatorcontrib>Yeh, Jieh-Shan</creatorcontrib><creatorcontrib>Chang, Chin-Chen</creatorcontrib><title>Direct Candidates Generation: A Novel Algorithm for Discovering Complete Share-Frequent Itemsets</title><title>Fuzzy Systems and Knowledge Discovery</title><description>The value of the itemset share is one way of evaluating the magnitude of an itemset. From business perspective, itemset share values reflect more the significance of itemsets for mining association rules in a database. The Share-counted FSM (ShFSM) algorithm is one of the best algorithms which can discover all share-frequent itemsets efficiently. However, ShFSM wastes the computation time on the join and the prune steps of candidate generation in each pass, and generates too many useless candidates. Therefore, this study proposes the Direct Candidates Generation (DCG) algorithm to directly generate candidates without the prune and the join steps in each pass. Moreover, the number of candidates generated by DCG is less than that by ShFSM. Experimental results reveal that the proposed method performs significantly better than ShFSM.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540283315</isbn><isbn>9783540283317</isbn><isbn>3540283129</isbn><isbn>9783540283126</isbn><isbn>9783540318286</isbn><isbn>3540318283</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUDtPwzAYNC-JUjrxB7wwMATs-M1WpbRUqmAA5uA6X9pAXtgGiX9PIhiY7rvvTqfTIXRByTUlRN1QKjgZjlyqAzQzSrOBM6pTLQ_RhEpKE8a4OUJno5Bqxqg4RhPCSJoYxdkpmoXwNiQQbhjh6QS9LioPLuLMtkVV2AgBr6AFb2PVtbd4jh-6L6jxvN51vor7Bpedx4squOHtq3aHs67pa4iAn_bWQ7L08PEJbcTrCE2AGM7RSWnrALM_nKKX5d1zdp9sHlfrbL5JXCppTBSnfFsorQFIKRjRUDjOmBDacMlMIa3R3Grn5HbUeaqEM6UjQLgmwgCbosvf3N4GZ-vS29ZVIe991Vj_nVNFmUglGXxXv77Qj_3B59uuew85Jfk4cf5vYvYDPXBn6Q</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Li, Yu-Chiang</creator><creator>Yeh, Jieh-Shan</creator><creator>Chang, Chin-Chen</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Direct Candidates Generation: A Novel Algorithm for Discovering Complete Share-Frequent Itemsets</title><author>Li, Yu-Chiang ; Yeh, Jieh-Shan ; Chang, Chin-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-7414bd788ee0f5308edc43355894639d6a984a8cc6b0f534275c9fc0e048059e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yu-Chiang</creatorcontrib><creatorcontrib>Yeh, Jieh-Shan</creatorcontrib><creatorcontrib>Chang, Chin-Chen</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yu-Chiang</au><au>Yeh, Jieh-Shan</au><au>Chang, Chin-Chen</au><au>Jin, Yaochu</au><au>Wang, Lipo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Direct Candidates Generation: A Novel Algorithm for Discovering Complete Share-Frequent Itemsets</atitle><btitle>Fuzzy Systems and Knowledge Discovery</btitle><date>2005</date><risdate>2005</risdate><spage>551</spage><epage>560</epage><pages>551-560</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540283315</isbn><isbn>9783540283317</isbn><isbn>3540283129</isbn><isbn>9783540283126</isbn><eisbn>9783540318286</eisbn><eisbn>3540318283</eisbn><abstract>The value of the itemset share is one way of evaluating the magnitude of an itemset. From business perspective, itemset share values reflect more the significance of itemsets for mining association rules in a database. The Share-counted FSM (ShFSM) algorithm is one of the best algorithms which can discover all share-frequent itemsets efficiently. However, ShFSM wastes the computation time on the join and the prune steps of candidate generation in each pass, and generates too many useless candidates. Therefore, this study proposes the Direct Candidates Generation (DCG) algorithm to directly generate candidates without the prune and the join steps in each pass. Moreover, the number of candidates generated by DCG is less than that by ShFSM. Experimental results reveal that the proposed method performs significantly better than ShFSM.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11540007_67</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Fuzzy Systems and Knowledge Discovery, 2005, p.551-560
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17135260
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
title Direct Candidates Generation: A Novel Algorithm for Discovering Complete Share-Frequent Itemsets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Direct%20Candidates%20Generation:%20A%20Novel%20Algorithm%20for%20Discovering%20Complete%20Share-Frequent%20Itemsets&rft.btitle=Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Li,%20Yu-Chiang&rft.date=2005&rft.spage=551&rft.epage=560&rft.pages=551-560&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540283315&rft.isbn_list=9783540283317&rft.isbn_list=3540283129&rft.isbn_list=9783540283126&rft_id=info:doi/10.1007/11540007_67&rft_dat=%3Cpascalfrancis_sprin%3E17135260%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318286&rft.eisbn_list=3540318283&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true