Ultrafilter Extensions for Coalgebras
This paper studies finitary modal logics as specification languages for Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-known that Set-coalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide wi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 277 |
---|---|
container_issue | |
container_start_page | 263 |
container_title | |
container_volume | |
creator | Kupke, C. Kurz, A. Pattinson, D. |
description | This paper studies finitary modal logics as specification languages for Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-known that Set-coalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide with logical equivalence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the other hand, do provide an adequate semantics for finitary modal logics. This leads us to study the relationship of finitary modal logics and Set-coalgebras by uncovering the relationship between Set-coalgebras and Stone-coalgebras. This builds on a long tradition in modal logic, where one studies canonical extensions of modal algebras and ultrafilter extensions of Kripke frames to account for finitary logics. Our main contributions are the generalisations of two classical theorems in modal logic to coalgebras, namely the Jónsson-Tarski theorem giving a set-theoretic representation for each modal algebra and the bisimulation-somewhere-else theorem stating that two states of a coalgebra have the same (finitary modal) theory iff they are bisimilar (or behaviourally equivalent) in the ultrafilter extension of the coalgebra. |
doi_str_mv | 10.1007/11548133_17 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17116026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17116026</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-4978373c576e16b7e2e7010e86ecfdfd11a97ea5d6b1e12bea3e5b48fa9805c03</originalsourceid><addsrcrecordid>eNpNkLtOxDAURM1LIrtsxQ-k2YIicK-d-FGiaHlIK9GwdWQn16tASCI7Bfw9iZaCaoo5Gs0MY7cI9wigHhCLXKMQFaoztjFKiyIHgVpJdc4SlIiZELm5YKvF4FpyMJcsAQE8MyoX12wV4wcAcGV4wraHbgrWt91EId19T9THduhj6oeQloPtjuSCjTfsytsu0uZP1-zwtHsvX7L92_Nr-bjPRo5myvKljhJ1oSShdIo4KUAgLan2jW8QrVFki0Y6JOSOrKDC5dpbo6GoQazZ9pQ72ljbzgfb122sxtB-2fAzT0aUwOXM3Z24OFv9kULlhuEzVgjVclL17yTxCw4TUyU</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ultrafilter Extensions for Coalgebras</title><source>Springer Books</source><creator>Kupke, C. ; Kurz, A. ; Pattinson, D.</creator><contributor>Roggenbach, Markus ; Harman, Neil ; Fiadeiro, José Luiz ; Rutten, Jan</contributor><creatorcontrib>Kupke, C. ; Kurz, A. ; Pattinson, D. ; Roggenbach, Markus ; Harman, Neil ; Fiadeiro, José Luiz ; Rutten, Jan</creatorcontrib><description>This paper studies finitary modal logics as specification languages for Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-known that Set-coalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide with logical equivalence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the other hand, do provide an adequate semantics for finitary modal logics. This leads us to study the relationship of finitary modal logics and Set-coalgebras by uncovering the relationship between Set-coalgebras and Stone-coalgebras. This builds on a long tradition in modal logic, where one studies canonical extensions of modal algebras and ultrafilter extensions of Kripke frames to account for finitary logics. Our main contributions are the generalisations of two classical theorems in modal logic to coalgebras, namely the Jónsson-Tarski theorem giving a set-theoretic representation for each modal algebra and the bisimulation-somewhere-else theorem stating that two states of a coalgebra have the same (finitary modal) theory iff they are bisimilar (or behaviourally equivalent) in the ultrafilter extension of the coalgebra.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540286209</identifier><identifier>ISBN: 9783540286202</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318767</identifier><identifier>EISBN: 3540318763</identifier><identifier>DOI: 10.1007/11548133_17</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Programming theory ; Theoretical computing</subject><ispartof>Algebra and Coalgebra in Computer Science, 2005, p.263-277</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11548133_17$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11548133_17$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17116026$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Roggenbach, Markus</contributor><contributor>Harman, Neil</contributor><contributor>Fiadeiro, José Luiz</contributor><contributor>Rutten, Jan</contributor><creatorcontrib>Kupke, C.</creatorcontrib><creatorcontrib>Kurz, A.</creatorcontrib><creatorcontrib>Pattinson, D.</creatorcontrib><title>Ultrafilter Extensions for Coalgebras</title><title>Algebra and Coalgebra in Computer Science</title><description>This paper studies finitary modal logics as specification languages for Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-known that Set-coalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide with logical equivalence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the other hand, do provide an adequate semantics for finitary modal logics. This leads us to study the relationship of finitary modal logics and Set-coalgebras by uncovering the relationship between Set-coalgebras and Stone-coalgebras. This builds on a long tradition in modal logic, where one studies canonical extensions of modal algebras and ultrafilter extensions of Kripke frames to account for finitary logics. Our main contributions are the generalisations of two classical theorems in modal logic to coalgebras, namely the Jónsson-Tarski theorem giving a set-theoretic representation for each modal algebra and the bisimulation-somewhere-else theorem stating that two states of a coalgebra have the same (finitary modal) theory iff they are bisimilar (or behaviourally equivalent) in the ultrafilter extension of the coalgebra.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Programming theory</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540286209</isbn><isbn>9783540286202</isbn><isbn>9783540318767</isbn><isbn>3540318763</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkLtOxDAURM1LIrtsxQ-k2YIicK-d-FGiaHlIK9GwdWQn16tASCI7Bfw9iZaCaoo5Gs0MY7cI9wigHhCLXKMQFaoztjFKiyIHgVpJdc4SlIiZELm5YKvF4FpyMJcsAQE8MyoX12wV4wcAcGV4wraHbgrWt91EId19T9THduhj6oeQloPtjuSCjTfsytsu0uZP1-zwtHsvX7L92_Nr-bjPRo5myvKljhJ1oSShdIo4KUAgLan2jW8QrVFki0Y6JOSOrKDC5dpbo6GoQazZ9pQ72ljbzgfb122sxtB-2fAzT0aUwOXM3Z24OFv9kULlhuEzVgjVclL17yTxCw4TUyU</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Kupke, C.</creator><creator>Kurz, A.</creator><creator>Pattinson, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Ultrafilter Extensions for Coalgebras</title><author>Kupke, C. ; Kurz, A. ; Pattinson, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-4978373c576e16b7e2e7010e86ecfdfd11a97ea5d6b1e12bea3e5b48fa9805c03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Programming theory</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kupke, C.</creatorcontrib><creatorcontrib>Kurz, A.</creatorcontrib><creatorcontrib>Pattinson, D.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kupke, C.</au><au>Kurz, A.</au><au>Pattinson, D.</au><au>Roggenbach, Markus</au><au>Harman, Neil</au><au>Fiadeiro, José Luiz</au><au>Rutten, Jan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ultrafilter Extensions for Coalgebras</atitle><btitle>Algebra and Coalgebra in Computer Science</btitle><date>2005</date><risdate>2005</risdate><spage>263</spage><epage>277</epage><pages>263-277</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540286209</isbn><isbn>9783540286202</isbn><eisbn>9783540318767</eisbn><eisbn>3540318763</eisbn><abstract>This paper studies finitary modal logics as specification languages for Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is well-known that Set-coalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide with logical equivalence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the other hand, do provide an adequate semantics for finitary modal logics. This leads us to study the relationship of finitary modal logics and Set-coalgebras by uncovering the relationship between Set-coalgebras and Stone-coalgebras. This builds on a long tradition in modal logic, where one studies canonical extensions of modal algebras and ultrafilter extensions of Kripke frames to account for finitary logics. Our main contributions are the generalisations of two classical theorems in modal logic to coalgebras, namely the Jónsson-Tarski theorem giving a set-theoretic representation for each modal algebra and the bisimulation-somewhere-else theorem stating that two states of a coalgebra have the same (finitary modal) theory iff they are bisimilar (or behaviourally equivalent) in the ultrafilter extension of the coalgebra.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11548133_17</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Algebra and Coalgebra in Computer Science, 2005, p.263-277 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17116026 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Programming theory Theoretical computing |
title | Ultrafilter Extensions for Coalgebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ultrafilter%20Extensions%20for%20Coalgebras&rft.btitle=Algebra%20and%20Coalgebra%20in%20Computer%20Science&rft.au=Kupke,%20C.&rft.date=2005&rft.spage=263&rft.epage=277&rft.pages=263-277&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540286209&rft.isbn_list=9783540286202&rft_id=info:doi/10.1007/11548133_17&rft_dat=%3Cpascalfrancis_sprin%3E17116026%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318767&rft.eisbn_list=3540318763&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |