Approximating the Distortion

Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hall, Alexander, Papadimitriou, Christos
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue
container_start_page 111
container_title
container_volume
creator Hall, Alexander
Papadimitriou, Christos
description Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even for 1-dimensional point sets. We also introduce additive distortion, and show that it can be easily approximated within a factor of two.
doi_str_mv 10.1007/11538462_10
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17115837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17115837</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-141ecb872a28b4499b67007ebf2312aeaccd3e6f073677324127bb2cf90fbe7f3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhs2XRFQysTJ0YWAI-Hyuzx6r8ilVYoHZso1dAiWJ4gzw7zEqQtxyw_vo9N7D2CnwS-CcrgAWqKUSFvgeqw1pXEiOoEniPqtAATSI0hz8ZUILNOqQVRy5aEzhjlmd8xsvg6CQm4qdLYdh7D_bDze13WY-vcb5dZunfpzavjthR8ltc6x_94w93948re6b9ePdw2q5bgYBZmpAQgxek3BCeymN8YpK4eiTQBAuuhBeMKrECRURCgmCvBchGZ58pIQzdr67O7gc3DaNrgtttsNYao1fFqi8rpEKd7Hjcom6TRyt7_v3XITYH0P2nyH8BveFUNY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approximating the Distortion</title><source>Springer Books</source><creator>Hall, Alexander ; Papadimitriou, Christos</creator><contributor>Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</contributor><creatorcontrib>Hall, Alexander ; Papadimitriou, Christos ; Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</creatorcontrib><description>Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even for 1-dimensional point sets. We also introduce additive distortion, and show that it can be easily approximated within a factor of two.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540282396</identifier><identifier>ISBN: 3540282394</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318743</identifier><identifier>EISBN: 3540318747</identifier><identifier>DOI: 10.1007/11538462_10</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Operational research and scientific management ; Operational research. Management science ; Theoretical computing</subject><ispartof>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.111-122</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11538462_10$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11538462_10$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17115837$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Trevisan, Luca</contributor><contributor>Chekuri, Chandra</contributor><contributor>Jansen, Klaus</contributor><contributor>Rolim, José D. P.</contributor><creatorcontrib>Hall, Alexander</creatorcontrib><creatorcontrib>Papadimitriou, Christos</creatorcontrib><title>Approximating the Distortion</title><title>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</title><description>Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even for 1-dimensional point sets. We also introduce additive distortion, and show that it can be easily approximated within a factor of two.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540282396</isbn><isbn>3540282394</isbn><isbn>9783540318743</isbn><isbn>3540318747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAQhs2XRFQysTJ0YWAI-Hyuzx6r8ilVYoHZso1dAiWJ4gzw7zEqQtxyw_vo9N7D2CnwS-CcrgAWqKUSFvgeqw1pXEiOoEniPqtAATSI0hz8ZUILNOqQVRy5aEzhjlmd8xsvg6CQm4qdLYdh7D_bDze13WY-vcb5dZunfpzavjthR8ltc6x_94w93948re6b9ePdw2q5bgYBZmpAQgxek3BCeymN8YpK4eiTQBAuuhBeMKrECRURCgmCvBchGZ58pIQzdr67O7gc3DaNrgtttsNYao1fFqi8rpEKd7Hjcom6TRyt7_v3XITYH0P2nyH8BveFUNY</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Hall, Alexander</creator><creator>Papadimitriou, Christos</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Approximating the Distortion</title><author>Hall, Alexander ; Papadimitriou, Christos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-141ecb872a28b4499b67007ebf2312aeaccd3e6f073677324127bb2cf90fbe7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Alexander</creatorcontrib><creatorcontrib>Papadimitriou, Christos</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Alexander</au><au>Papadimitriou, Christos</au><au>Trevisan, Luca</au><au>Chekuri, Chandra</au><au>Jansen, Klaus</au><au>Rolim, José D. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximating the Distortion</atitle><btitle>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</btitle><date>2005</date><risdate>2005</risdate><spage>111</spage><epage>122</epage><pages>111-122</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540282396</isbn><isbn>3540282394</isbn><eisbn>9783540318743</eisbn><eisbn>3540318747</eisbn><abstract>Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even for 1-dimensional point sets. We also introduce additive distortion, and show that it can be easily approximated within a factor of two.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11538462_10</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.111-122
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17115837
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Flows in networks. Combinatorial problems
Operational research and scientific management
Operational research. Management science
Theoretical computing
title Approximating the Distortion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximating%20the%20Distortion&rft.btitle=Approximation,%20Randomization%20and%20Combinatorial%20Optimization.%20Algorithms%20and%20Techniques&rft.au=Hall,%20Alexander&rft.date=2005&rft.spage=111&rft.epage=122&rft.pages=111-122&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540282396&rft.isbn_list=3540282394&rft_id=info:doi/10.1007/11538462_10&rft_dat=%3Cpascalfrancis_sprin%3E17115837%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318743&rft.eisbn_list=3540318747&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true