Approximating the Distortion
Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demon...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | |
container_start_page | 111 |
container_title | |
container_volume | |
creator | Hall, Alexander Papadimitriou, Christos |
description | Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even for 1-dimensional point sets. We also introduce additive distortion, and show that it can be easily approximated within a factor of two. |
doi_str_mv | 10.1007/11538462_10 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17115837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17115837</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-141ecb872a28b4499b67007ebf2312aeaccd3e6f073677324127bb2cf90fbe7f3</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhs2XRFQysTJ0YWAI-Hyuzx6r8ilVYoHZso1dAiWJ4gzw7zEqQtxyw_vo9N7D2CnwS-CcrgAWqKUSFvgeqw1pXEiOoEniPqtAATSI0hz8ZUILNOqQVRy5aEzhjlmd8xsvg6CQm4qdLYdh7D_bDze13WY-vcb5dZunfpzavjthR8ltc6x_94w93948re6b9ePdw2q5bgYBZmpAQgxek3BCeymN8YpK4eiTQBAuuhBeMKrECRURCgmCvBchGZ58pIQzdr67O7gc3DaNrgtttsNYao1fFqi8rpEKd7Hjcom6TRyt7_v3XITYH0P2nyH8BveFUNY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approximating the Distortion</title><source>Springer Books</source><creator>Hall, Alexander ; Papadimitriou, Christos</creator><contributor>Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</contributor><creatorcontrib>Hall, Alexander ; Papadimitriou, Christos ; Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</creatorcontrib><description>Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even for 1-dimensional point sets. We also introduce additive distortion, and show that it can be easily approximated within a factor of two.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540282396</identifier><identifier>ISBN: 3540282394</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318743</identifier><identifier>EISBN: 3540318747</identifier><identifier>DOI: 10.1007/11538462_10</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Operational research and scientific management ; Operational research. Management science ; Theoretical computing</subject><ispartof>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.111-122</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11538462_10$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11538462_10$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17115837$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Trevisan, Luca</contributor><contributor>Chekuri, Chandra</contributor><contributor>Jansen, Klaus</contributor><contributor>Rolim, José D. P.</contributor><creatorcontrib>Hall, Alexander</creatorcontrib><creatorcontrib>Papadimitriou, Christos</creatorcontrib><title>Approximating the Distortion</title><title>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</title><description>Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even for 1-dimensional point sets. We also introduce additive distortion, and show that it can be easily approximated within a factor of two.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540282396</isbn><isbn>3540282394</isbn><isbn>9783540318743</isbn><isbn>3540318747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAQhs2XRFQysTJ0YWAI-Hyuzx6r8ilVYoHZso1dAiWJ4gzw7zEqQtxyw_vo9N7D2CnwS-CcrgAWqKUSFvgeqw1pXEiOoEniPqtAATSI0hz8ZUILNOqQVRy5aEzhjlmd8xsvg6CQm4qdLYdh7D_bDze13WY-vcb5dZunfpzavjthR8ltc6x_94w93948re6b9ePdw2q5bgYBZmpAQgxek3BCeymN8YpK4eiTQBAuuhBeMKrECRURCgmCvBchGZ58pIQzdr67O7gc3DaNrgtttsNYao1fFqi8rpEKd7Hjcom6TRyt7_v3XITYH0P2nyH8BveFUNY</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Hall, Alexander</creator><creator>Papadimitriou, Christos</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Approximating the Distortion</title><author>Hall, Alexander ; Papadimitriou, Christos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-141ecb872a28b4499b67007ebf2312aeaccd3e6f073677324127bb2cf90fbe7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Alexander</creatorcontrib><creatorcontrib>Papadimitriou, Christos</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Alexander</au><au>Papadimitriou, Christos</au><au>Trevisan, Luca</au><au>Chekuri, Chandra</au><au>Jansen, Klaus</au><au>Rolim, José D. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximating the Distortion</atitle><btitle>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</btitle><date>2005</date><risdate>2005</risdate><spage>111</spage><epage>122</epage><pages>111-122</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540282396</isbn><isbn>3540282394</isbn><eisbn>9783540318743</eisbn><eisbn>3540318747</eisbn><abstract>Kenyon et al. (STOC 04) compute the distortion between one-dimensional finite point sets when the distortion is small; Papadimitriou and Safra (SODA 05) show that the problem is NP-hard to approximate within a factor of 3, albeit in 3 dimensions. We solve an open problem in these two papers by demonstrating that, when the distortion is large, it is hard to approximate within large factors, even for 1-dimensional point sets. We also introduce additive distortion, and show that it can be easily approximated within a factor of two.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11538462_10</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.111-122 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17115837 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Flows in networks. Combinatorial problems Operational research and scientific management Operational research. Management science Theoretical computing |
title | Approximating the Distortion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximating%20the%20Distortion&rft.btitle=Approximation,%20Randomization%20and%20Combinatorial%20Optimization.%20Algorithms%20and%20Techniques&rft.au=Hall,%20Alexander&rft.date=2005&rft.spage=111&rft.epage=122&rft.pages=111-122&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540282396&rft.isbn_list=3540282394&rft_id=info:doi/10.1007/11538462_10&rft_dat=%3Cpascalfrancis_sprin%3E17115837%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318743&rft.eisbn_list=3540318747&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |