A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses

We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover proble...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mestre, Julián
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue
container_start_page 182
container_title
container_volume
creator Mestre, Julián
description We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(V log V + E) time. This represents an improvement in running time from the previously known fastest algorithm. Our technique can also be applied to a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity ku and a weight wu. A solution consists of a function x: V →ℕ0 and an orientation of all but s edges, such that the number edges oriented toward any vertex u is at most xuku. The cost of the cover is given by ∑ v ∈ Vxvwv. Our objective is to find a cover with minimum cost. We provide an algorithm with the same performance guarantee as for regular partial vertex cover. In this case no algorithm for the problem was known.
doi_str_mv 10.1007/11538462_16
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17115755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17115755</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-62742048ed0ae48638486e377a087564654ae49bfbed20e5a9829e2eb2ce6ab53</originalsourceid><addsrcrecordid>eNpNkElPwzAQhc0mUZWe-AO-cOAQ8BYv3KJSChKIHliOkZNMSmgaR3aKyr_HVRFiLqN579NI7yF0TskVJURdU5pyLSTLqTxAE6M0TwXhVCvBD9GISkoTzoU5-vOYZtzIYzQinLDERO4UTUL4JHE4lZyYEXrP8MI3a9smtxvb4qzvvdvGe2hch7N26XwzfKxx7TxeWD80kXkDP8AWT90X-Bv8ZFdNt8SzalPaASo830AIEM7QSW3bAJPfPUavd7OX6X3y-Dx_mGaPSc-oGRLJlGBEaKiIBaFlDKglcKUs0SqVQqYi6qaoC6gYgdQazQwwKFgJ0hYpH6OL_d_ehtK2tbdd2YS832Xy3zlVsTWV7rjLPRei1S3B54Vzq5BTku_Kzf-Vy38A025lYQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses</title><source>Springer Books</source><creator>Mestre, Julián</creator><contributor>Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</contributor><creatorcontrib>Mestre, Julián ; Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</creatorcontrib><description>We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(V log V + E) time. This represents an improvement in running time from the previously known fastest algorithm. Our technique can also be applied to a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity ku and a weight wu. A solution consists of a function x: V →ℕ0 and an orientation of all but s edges, such that the number edges oriented toward any vertex u is at most xuku. The cost of the cover is given by ∑ v ∈ Vxvwv. Our objective is to find a cover with minimum cost. We provide an algorithm with the same performance guarantee as for regular partial vertex cover. In this case no algorithm for the problem was known.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540282396</identifier><identifier>ISBN: 3540282394</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318743</identifier><identifier>EISBN: 3540318747</identifier><identifier>DOI: 10.1007/11538462_16</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Operational research and scientific management ; Operational research. Management science ; Theoretical computing</subject><ispartof>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.182-191</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11538462_16$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11538462_16$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4047,4048,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17115755$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Trevisan, Luca</contributor><contributor>Chekuri, Chandra</contributor><contributor>Jansen, Klaus</contributor><contributor>Rolim, José D. P.</contributor><creatorcontrib>Mestre, Julián</creatorcontrib><title>A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses</title><title>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</title><description>We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(V log V + E) time. This represents an improvement in running time from the previously known fastest algorithm. Our technique can also be applied to a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity ku and a weight wu. A solution consists of a function x: V →ℕ0 and an orientation of all but s edges, such that the number edges oriented toward any vertex u is at most xuku. The cost of the cover is given by ∑ v ∈ Vxvwv. Our objective is to find a cover with minimum cost. We provide an algorithm with the same performance guarantee as for regular partial vertex cover. In this case no algorithm for the problem was known.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540282396</isbn><isbn>3540282394</isbn><isbn>9783540318743</isbn><isbn>3540318747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkElPwzAQhc0mUZWe-AO-cOAQ8BYv3KJSChKIHliOkZNMSmgaR3aKyr_HVRFiLqN579NI7yF0TskVJURdU5pyLSTLqTxAE6M0TwXhVCvBD9GISkoTzoU5-vOYZtzIYzQinLDERO4UTUL4JHE4lZyYEXrP8MI3a9smtxvb4qzvvdvGe2hch7N26XwzfKxx7TxeWD80kXkDP8AWT90X-Bv8ZFdNt8SzalPaASo830AIEM7QSW3bAJPfPUavd7OX6X3y-Dx_mGaPSc-oGRLJlGBEaKiIBaFlDKglcKUs0SqVQqYi6qaoC6gYgdQazQwwKFgJ0hYpH6OL_d_ehtK2tbdd2YS832Xy3zlVsTWV7rjLPRei1S3B54Vzq5BTku_Kzf-Vy38A025lYQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Mestre, Julián</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses</title><author>Mestre, Julián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-62742048ed0ae48638486e377a087564654ae49bfbed20e5a9829e2eb2ce6ab53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mestre, Julián</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mestre, Julián</au><au>Trevisan, Luca</au><au>Chekuri, Chandra</au><au>Jansen, Klaus</au><au>Rolim, José D. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses</atitle><btitle>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</btitle><date>2005</date><risdate>2005</risdate><spage>182</spage><epage>191</epage><pages>182-191</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540282396</isbn><isbn>3540282394</isbn><eisbn>9783540318743</eisbn><eisbn>3540318747</eisbn><abstract>We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(V log V + E) time. This represents an improvement in running time from the previously known fastest algorithm. Our technique can also be applied to a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity ku and a weight wu. A solution consists of a function x: V →ℕ0 and an orientation of all but s edges, such that the number edges oriented toward any vertex u is at most xuku. The cost of the cover is given by ∑ v ∈ Vxvwv. Our objective is to find a cover with minimum cost. We provide an algorithm with the same performance guarantee as for regular partial vertex cover. In this case no algorithm for the problem was known.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11538462_16</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.182-191
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17115755
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Flows in networks. Combinatorial problems
Operational research and scientific management
Operational research. Management science
Theoretical computing
title A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Primal-Dual%20Approximation%20Algorithm%20for%20Partial%20Vertex%20Cover:%20Making%20Educated%20Guesses&rft.btitle=Approximation,%20Randomization%20and%20Combinatorial%20Optimization.%20Algorithms%20and%20Techniques&rft.au=Mestre,%20Juli%C3%A1n&rft.date=2005&rft.spage=182&rft.epage=191&rft.pages=182-191&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540282396&rft.isbn_list=3540282394&rft_id=info:doi/10.1007/11538462_16&rft_dat=%3Cpascalfrancis_sprin%3E17115755%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318743&rft.eisbn_list=3540318747&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true