A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses
We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover proble...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 191 |
---|---|
container_issue | |
container_start_page | 182 |
container_title | |
container_volume | |
creator | Mestre, Julián |
description | We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(V log V + E) time. This represents an improvement in running time from the previously known fastest algorithm.
Our technique can also be applied to a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity ku and a weight wu. A solution consists of a function x: V →ℕ0 and an orientation of all but s edges, such that the number edges oriented toward any vertex u is at most xuku. The cost of the cover is given by ∑ v ∈ Vxvwv. Our objective is to find a cover with minimum cost. We provide an algorithm with the same performance guarantee as for regular partial vertex cover. In this case no algorithm for the problem was known. |
doi_str_mv | 10.1007/11538462_16 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17115755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17115755</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-62742048ed0ae48638486e377a087564654ae49bfbed20e5a9829e2eb2ce6ab53</originalsourceid><addsrcrecordid>eNpNkElPwzAQhc0mUZWe-AO-cOAQ8BYv3KJSChKIHliOkZNMSmgaR3aKyr_HVRFiLqN579NI7yF0TskVJURdU5pyLSTLqTxAE6M0TwXhVCvBD9GISkoTzoU5-vOYZtzIYzQinLDERO4UTUL4JHE4lZyYEXrP8MI3a9smtxvb4qzvvdvGe2hch7N26XwzfKxx7TxeWD80kXkDP8AWT90X-Bv8ZFdNt8SzalPaASo830AIEM7QSW3bAJPfPUavd7OX6X3y-Dx_mGaPSc-oGRLJlGBEaKiIBaFlDKglcKUs0SqVQqYi6qaoC6gYgdQazQwwKFgJ0hYpH6OL_d_ehtK2tbdd2YS832Xy3zlVsTWV7rjLPRei1S3B54Vzq5BTku_Kzf-Vy38A025lYQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses</title><source>Springer Books</source><creator>Mestre, Julián</creator><contributor>Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</contributor><creatorcontrib>Mestre, Julián ; Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</creatorcontrib><description>We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(V log V + E) time. This represents an improvement in running time from the previously known fastest algorithm.
Our technique can also be applied to a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity ku and a weight wu. A solution consists of a function x: V →ℕ0 and an orientation of all but s edges, such that the number edges oriented toward any vertex u is at most xuku. The cost of the cover is given by ∑ v ∈ Vxvwv. Our objective is to find a cover with minimum cost. We provide an algorithm with the same performance guarantee as for regular partial vertex cover. In this case no algorithm for the problem was known.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540282396</identifier><identifier>ISBN: 3540282394</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318743</identifier><identifier>EISBN: 3540318747</identifier><identifier>DOI: 10.1007/11538462_16</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Operational research and scientific management ; Operational research. Management science ; Theoretical computing</subject><ispartof>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.182-191</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11538462_16$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11538462_16$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4047,4048,27923,38253,41440,42509</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17115755$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Trevisan, Luca</contributor><contributor>Chekuri, Chandra</contributor><contributor>Jansen, Klaus</contributor><contributor>Rolim, José D. P.</contributor><creatorcontrib>Mestre, Julián</creatorcontrib><title>A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses</title><title>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</title><description>We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(V log V + E) time. This represents an improvement in running time from the previously known fastest algorithm.
Our technique can also be applied to a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity ku and a weight wu. A solution consists of a function x: V →ℕ0 and an orientation of all but s edges, such that the number edges oriented toward any vertex u is at most xuku. The cost of the cover is given by ∑ v ∈ Vxvwv. Our objective is to find a cover with minimum cost. We provide an algorithm with the same performance guarantee as for regular partial vertex cover. In this case no algorithm for the problem was known.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540282396</isbn><isbn>3540282394</isbn><isbn>9783540318743</isbn><isbn>3540318747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkElPwzAQhc0mUZWe-AO-cOAQ8BYv3KJSChKIHliOkZNMSmgaR3aKyr_HVRFiLqN579NI7yF0TskVJURdU5pyLSTLqTxAE6M0TwXhVCvBD9GISkoTzoU5-vOYZtzIYzQinLDERO4UTUL4JHE4lZyYEXrP8MI3a9smtxvb4qzvvdvGe2hch7N26XwzfKxx7TxeWD80kXkDP8AWT90X-Bv8ZFdNt8SzalPaASo830AIEM7QSW3bAJPfPUavd7OX6X3y-Dx_mGaPSc-oGRLJlGBEaKiIBaFlDKglcKUs0SqVQqYi6qaoC6gYgdQazQwwKFgJ0hYpH6OL_d_ehtK2tbdd2YS832Xy3zlVsTWV7rjLPRei1S3B54Vzq5BTku_Kzf-Vy38A025lYQ</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Mestre, Julián</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses</title><author>Mestre, Julián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-62742048ed0ae48638486e377a087564654ae49bfbed20e5a9829e2eb2ce6ab53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mestre, Julián</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mestre, Julián</au><au>Trevisan, Luca</au><au>Chekuri, Chandra</au><au>Jansen, Klaus</au><au>Rolim, José D. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses</atitle><btitle>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</btitle><date>2005</date><risdate>2005</risdate><spage>182</spage><epage>191</epage><pages>182-191</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540282396</isbn><isbn>3540282394</isbn><eisbn>9783540318743</eisbn><eisbn>3540318747</eisbn><abstract>We study the partial vertex cover problem, a generalization of the well-known vertex cover problem. Given a graph G=(V,E) and an integer s, the goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(V log V + E) time. This represents an improvement in running time from the previously known fastest algorithm.
Our technique can also be applied to a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity ku and a weight wu. A solution consists of a function x: V →ℕ0 and an orientation of all but s edges, such that the number edges oriented toward any vertex u is at most xuku. The cost of the cover is given by ∑ v ∈ Vxvwv. Our objective is to find a cover with minimum cost. We provide an algorithm with the same performance guarantee as for regular partial vertex cover. In this case no algorithm for the problem was known.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11538462_16</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.182-191 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17115755 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Flows in networks. Combinatorial problems Operational research and scientific management Operational research. Management science Theoretical computing |
title | A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Primal-Dual%20Approximation%20Algorithm%20for%20Partial%20Vertex%20Cover:%20Making%20Educated%20Guesses&rft.btitle=Approximation,%20Randomization%20and%20Combinatorial%20Optimization.%20Algorithms%20and%20Techniques&rft.au=Mestre,%20Juli%C3%A1n&rft.date=2005&rft.spage=182&rft.epage=191&rft.pages=182-191&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540282396&rft.isbn_list=3540282394&rft_id=info:doi/10.1007/11538462_16&rft_dat=%3Cpascalfrancis_sprin%3E17115755%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318743&rft.eisbn_list=3540318747&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |