Approximating the Bandwidth of Caterpillars

A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Feige, Uriel, Talwar, Kunal
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 73
container_issue
container_start_page 62
container_title
container_volume
creator Feige, Uriel
Talwar, Kunal
description A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/loglog n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\tilde{O}(\sqrt{n/\epsilon})}$\end{document}. This result generalizes to trees, planar graphs, and any family of graphs with treewidth \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(\sqrt{n})$\end{document}.
doi_str_mv 10.1007/11538462_6
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17115598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17115598</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-b835d1707b661ac33d2bac03634d22a85e88690c8a6f70e6c93db75283c5f3633</originalsourceid><addsrcrecordid>eNpFkMtKxEAQRdsXGMZs_IJsBEGiVV1JP5bj4AsG3Oi66XSSmWhMQndA_ftpGdHa1OIebhWHsXOEawSQN4glqUJwIw5YqqWisgBCJQs6ZAkKxJyo0Ed_GVectDhmCRDwXEfulKUhvEEcQkGgE3a1nCY_fnUfdu6GTTZvm-zWDvVnV8_bbGyzlZ0bP3V9b304Yyet7UOT_u4Fe72_e1k95uvnh6fVcp1PHNWcV_F4jRJkJQRaR1TzyjogQUXNuVVlo5TQ4JQVrYRGOE11JUuuyJVtpGjBLva9kw3O9q23g-uCmXz80n8blFFEqVXkLvdciNGwabypxvE9GATz48v8-6Id6M1VPA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approximating the Bandwidth of Caterpillars</title><source>Springer Books</source><creator>Feige, Uriel ; Talwar, Kunal</creator><contributor>Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</contributor><creatorcontrib>Feige, Uriel ; Talwar, Kunal ; Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</creatorcontrib><description>A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/loglog n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\tilde{O}(\sqrt{n/\epsilon})}$\end{document}. This result generalizes to trees, planar graphs, and any family of graphs with treewidth \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(\sqrt{n})$\end{document}.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540282396</identifier><identifier>ISBN: 3540282394</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318743</identifier><identifier>EISBN: 3540318747</identifier><identifier>DOI: 10.1007/11538462_6</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation Ratio ; Computer science; control theory; systems ; Decomposition Tree ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Integer Program ; Linear Arrangement ; Operational research and scientific management ; Operational research. Management science ; Partial Assignment ; Theoretical computing</subject><ispartof>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.62-73</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11538462_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11538462_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17115598$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Trevisan, Luca</contributor><contributor>Chekuri, Chandra</contributor><contributor>Jansen, Klaus</contributor><contributor>Rolim, José D. P.</contributor><creatorcontrib>Feige, Uriel</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><title>Approximating the Bandwidth of Caterpillars</title><title>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</title><description>A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/loglog n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\tilde{O}(\sqrt{n/\epsilon})}$\end{document}. This result generalizes to trees, planar graphs, and any family of graphs with treewidth \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(\sqrt{n})$\end{document}.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation Ratio</subject><subject>Computer science; control theory; systems</subject><subject>Decomposition Tree</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Integer Program</subject><subject>Linear Arrangement</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Partial Assignment</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540282396</isbn><isbn>3540282394</isbn><isbn>9783540318743</isbn><isbn>3540318747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkMtKxEAQRdsXGMZs_IJsBEGiVV1JP5bj4AsG3Oi66XSSmWhMQndA_ftpGdHa1OIebhWHsXOEawSQN4glqUJwIw5YqqWisgBCJQs6ZAkKxJyo0Ed_GVectDhmCRDwXEfulKUhvEEcQkGgE3a1nCY_fnUfdu6GTTZvm-zWDvVnV8_bbGyzlZ0bP3V9b304Yyet7UOT_u4Fe72_e1k95uvnh6fVcp1PHNWcV_F4jRJkJQRaR1TzyjogQUXNuVVlo5TQ4JQVrYRGOE11JUuuyJVtpGjBLva9kw3O9q23g-uCmXz80n8blFFEqVXkLvdciNGwabypxvE9GATz48v8-6Id6M1VPA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Feige, Uriel</creator><creator>Talwar, Kunal</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Approximating the Bandwidth of Caterpillars</title><author>Feige, Uriel ; Talwar, Kunal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-b835d1707b661ac33d2bac03634d22a85e88690c8a6f70e6c93db75283c5f3633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation Ratio</topic><topic>Computer science; control theory; systems</topic><topic>Decomposition Tree</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Integer Program</topic><topic>Linear Arrangement</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Partial Assignment</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feige, Uriel</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feige, Uriel</au><au>Talwar, Kunal</au><au>Trevisan, Luca</au><au>Chekuri, Chandra</au><au>Jansen, Klaus</au><au>Rolim, José D. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximating the Bandwidth of Caterpillars</atitle><btitle>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</btitle><date>2005</date><risdate>2005</risdate><spage>62</spage><epage>73</epage><pages>62-73</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540282396</isbn><isbn>3540282394</isbn><eisbn>9783540318743</eisbn><eisbn>3540318747</eisbn><abstract>A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/loglog n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{\tilde{O}(\sqrt{n/\epsilon})}$\end{document}. This result generalizes to trees, planar graphs, and any family of graphs with treewidth \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{O}(\sqrt{n})$\end{document}.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11538462_6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.62-73
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17115598
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximation Ratio
Computer science
control theory
systems
Decomposition Tree
Exact sciences and technology
Flows in networks. Combinatorial problems
Integer Program
Linear Arrangement
Operational research and scientific management
Operational research. Management science
Partial Assignment
Theoretical computing
title Approximating the Bandwidth of Caterpillars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximating%20the%20Bandwidth%20of%20Caterpillars&rft.btitle=Approximation,%20Randomization%20and%20Combinatorial%20Optimization.%20Algorithms%20and%20Techniques&rft.au=Feige,%20Uriel&rft.date=2005&rft.spage=62&rft.epage=73&rft.pages=62-73&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540282396&rft.isbn_list=3540282394&rft_id=info:doi/10.1007/11538462_6&rft_dat=%3Cpascalfrancis_sprin%3E17115598%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318743&rft.eisbn_list=3540318747&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true