Approximating the Bandwidth of Caterpillars
A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar,...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | |
container_start_page | 62 |
container_title | |
container_volume | |
creator | Feige, Uriel Talwar, Kunal |
description | A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/loglog n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2^{\tilde{O}(\sqrt{n/\epsilon})}$\end{document}. This result generalizes to trees, planar graphs, and any family of graphs with treewidth \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tilde{O}(\sqrt{n})$\end{document}. |
doi_str_mv | 10.1007/11538462_6 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17115598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17115598</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-b835d1707b661ac33d2bac03634d22a85e88690c8a6f70e6c93db75283c5f3633</originalsourceid><addsrcrecordid>eNpFkMtKxEAQRdsXGMZs_IJsBEGiVV1JP5bj4AsG3Oi66XSSmWhMQndA_ftpGdHa1OIebhWHsXOEawSQN4glqUJwIw5YqqWisgBCJQs6ZAkKxJyo0Ed_GVectDhmCRDwXEfulKUhvEEcQkGgE3a1nCY_fnUfdu6GTTZvm-zWDvVnV8_bbGyzlZ0bP3V9b304Yyet7UOT_u4Fe72_e1k95uvnh6fVcp1PHNWcV_F4jRJkJQRaR1TzyjogQUXNuVVlo5TQ4JQVrYRGOE11JUuuyJVtpGjBLva9kw3O9q23g-uCmXz80n8blFFEqVXkLvdciNGwabypxvE9GATz48v8-6Id6M1VPA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approximating the Bandwidth of Caterpillars</title><source>Springer Books</source><creator>Feige, Uriel ; Talwar, Kunal</creator><contributor>Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</contributor><creatorcontrib>Feige, Uriel ; Talwar, Kunal ; Trevisan, Luca ; Chekuri, Chandra ; Jansen, Klaus ; Rolim, José D. P.</creatorcontrib><description>A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/loglog n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2^{\tilde{O}(\sqrt{n/\epsilon})}$\end{document}. This result generalizes to trees, planar graphs, and any family of graphs with treewidth \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tilde{O}(\sqrt{n})$\end{document}.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540282396</identifier><identifier>ISBN: 3540282394</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318743</identifier><identifier>EISBN: 3540318747</identifier><identifier>DOI: 10.1007/11538462_6</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation Ratio ; Computer science; control theory; systems ; Decomposition Tree ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Integer Program ; Linear Arrangement ; Operational research and scientific management ; Operational research. Management science ; Partial Assignment ; Theoretical computing</subject><ispartof>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.62-73</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11538462_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11538462_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17115598$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Trevisan, Luca</contributor><contributor>Chekuri, Chandra</contributor><contributor>Jansen, Klaus</contributor><contributor>Rolim, José D. P.</contributor><creatorcontrib>Feige, Uriel</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><title>Approximating the Bandwidth of Caterpillars</title><title>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</title><description>A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/loglog n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2^{\tilde{O}(\sqrt{n/\epsilon})}$\end{document}. This result generalizes to trees, planar graphs, and any family of graphs with treewidth \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tilde{O}(\sqrt{n})$\end{document}.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation Ratio</subject><subject>Computer science; control theory; systems</subject><subject>Decomposition Tree</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Integer Program</subject><subject>Linear Arrangement</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Partial Assignment</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540282396</isbn><isbn>3540282394</isbn><isbn>9783540318743</isbn><isbn>3540318747</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkMtKxEAQRdsXGMZs_IJsBEGiVV1JP5bj4AsG3Oi66XSSmWhMQndA_ftpGdHa1OIebhWHsXOEawSQN4glqUJwIw5YqqWisgBCJQs6ZAkKxJyo0Ed_GVectDhmCRDwXEfulKUhvEEcQkGgE3a1nCY_fnUfdu6GTTZvm-zWDvVnV8_bbGyzlZ0bP3V9b304Yyet7UOT_u4Fe72_e1k95uvnh6fVcp1PHNWcV_F4jRJkJQRaR1TzyjogQUXNuVVlo5TQ4JQVrYRGOE11JUuuyJVtpGjBLva9kw3O9q23g-uCmXz80n8blFFEqVXkLvdciNGwabypxvE9GATz48v8-6Id6M1VPA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Feige, Uriel</creator><creator>Talwar, Kunal</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Approximating the Bandwidth of Caterpillars</title><author>Feige, Uriel ; Talwar, Kunal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-b835d1707b661ac33d2bac03634d22a85e88690c8a6f70e6c93db75283c5f3633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation Ratio</topic><topic>Computer science; control theory; systems</topic><topic>Decomposition Tree</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Integer Program</topic><topic>Linear Arrangement</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Partial Assignment</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feige, Uriel</creatorcontrib><creatorcontrib>Talwar, Kunal</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feige, Uriel</au><au>Talwar, Kunal</au><au>Trevisan, Luca</au><au>Chekuri, Chandra</au><au>Jansen, Klaus</au><au>Rolim, José D. P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approximating the Bandwidth of Caterpillars</atitle><btitle>Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques</btitle><date>2005</date><risdate>2005</risdate><spage>62</spage><epage>73</epage><pages>62-73</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540282396</isbn><isbn>3540282394</isbn><eisbn>9783540318743</eisbn><eisbn>3540318747</eisbn><abstract>A caterpillar is a tree in which all vertices of degree three or more lie on one path, called the backbone. We present a polynomial time algorithm that produces a linear arrangement of the vertices of a caterpillar with bandwidth at most O(log n/loglog n) times the local density of the caterpillar, where the local density is a well known lower bound on the bandwidth. This result is best possible in the sense that there are caterpillars whose bandwidth is larger than their local density by a factor of Ω(log n/loglog n). The previous best approximation ratio for the bandwidth of caterpillars was O(log n). We show that any further improvement in the approximation ratio would require using linear arrangements that do not respect the order of the vertices of the backbone. We also show how to obtain a (1 + ε) approximation for the bandwidth of caterpillars in time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2^{\tilde{O}(\sqrt{n/\epsilon})}$\end{document}. This result generalizes to trees, planar graphs, and any family of graphs with treewidth \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\tilde{O}(\sqrt{n})$\end{document}.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11538462_6</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques, 2005, p.62-73 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17115598 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Approximation Ratio Computer science control theory systems Decomposition Tree Exact sciences and technology Flows in networks. Combinatorial problems Integer Program Linear Arrangement Operational research and scientific management Operational research. Management science Partial Assignment Theoretical computing |
title | Approximating the Bandwidth of Caterpillars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approximating%20the%20Bandwidth%20of%20Caterpillars&rft.btitle=Approximation,%20Randomization%20and%20Combinatorial%20Optimization.%20Algorithms%20and%20Techniques&rft.au=Feige,%20Uriel&rft.date=2005&rft.spage=62&rft.epage=73&rft.pages=62-73&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540282396&rft.isbn_list=3540282394&rft_id=info:doi/10.1007/11538462_6&rft_dat=%3Cpascalfrancis_sprin%3E17115598%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318743&rft.eisbn_list=3540318747&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |