Self-learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data Using Voxel-Wise Gray Scale Invariants

We introduce and discuss a new method for segmentation and classification of cells from 3D tissue probes. The anisotropic 3D volumetric data of fluorescent marked cell nuclei is recorded by a confocal laser scanning microscope (LSM). Voxel-wise gray scale features (see accompaning paper [1][2]) ), i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fehr, Janis, Ronneberger, Olaf, Kurz, Haymo, Burkhardt, Hans
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue
container_start_page 377
container_title
container_volume
creator Fehr, Janis
Ronneberger, Olaf
Kurz, Haymo
Burkhardt, Hans
description We introduce and discuss a new method for segmentation and classification of cells from 3D tissue probes. The anisotropic 3D volumetric data of fluorescent marked cell nuclei is recorded by a confocal laser scanning microscope (LSM). Voxel-wise gray scale features (see accompaning paper [1][2]) ), invariant towards 3D rotation of its neighborhood, are extracted from the original data by integrating over the 3D rotation group with non-linear kernels. In an interactive process, support-vector machine models are trained for each cell type using user relevance feedback. With this reference database at hand, segmentation and classification can be achieved in one step, simply by classifying each voxel and performing a connected component labelling, automatically without further human interaction. This general approach easily allows adoption of other cell types or tissue structures just by adding new training samples and re-training the model. Experiments with datasets from chicken chorioallantoic membrane show encouraging results.
doi_str_mv 10.1007/11550518_47
format Book Chapter
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17115292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17115292</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-c6800ea57d6a87f980b7c307a20dff30efbe49b8bf4bcf11149aff2b5e1d0e953</originalsourceid><addsrcrecordid>eNpNkD9PwzAQxc0_iQKd-AJeGBgCZzuu4xG1UCohGApljC7puTK4ThUHRL89qcrALSfde_f09GPsUsCNADC3QmgNWhRlbg7YmdI5KGFzqQ_ZQIyEyJTK7REbWlPsNFkYUPKYDUCBzKzJ1SkbpvQB_fR_SpsB284puCwQttHHFZ_Tak2xw843kWNc8nHAlLzz9f7UOD6mELLnrzqQ5z5yNeGLJnytqWt9zSfYIX9Lu6hF80Mhe_eJ-LTFLZ_XGIjP4je2HmOXLtiJw5Bo-LfP2dvD_ev4MXt6mc7Gd0_ZRupRl9WjAoBQm-UIC-NsAZWpFRiUsHROAbmKclsVlcur2gkhcovOyUqTWAJZrc7Z1T53g6mv4FqMtU_lpvVrbLelMD1UaWXvu977Ui_FFbVl1TSfqRRQ7tiX_9irX8Ktchw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype></control><display><type>book_chapter</type><title>Self-learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data Using Voxel-Wise Gray Scale Invariants</title><source>Springer Books</source><creator>Fehr, Janis ; Ronneberger, Olaf ; Kurz, Haymo ; Burkhardt, Hans</creator><contributor>Kropatsch, Walter G. ; Sablatnig, Robert ; Hanbury, Allan</contributor><creatorcontrib>Fehr, Janis ; Ronneberger, Olaf ; Kurz, Haymo ; Burkhardt, Hans ; Kropatsch, Walter G. ; Sablatnig, Robert ; Hanbury, Allan</creatorcontrib><description>We introduce and discuss a new method for segmentation and classification of cells from 3D tissue probes. The anisotropic 3D volumetric data of fluorescent marked cell nuclei is recorded by a confocal laser scanning microscope (LSM). Voxel-wise gray scale features (see accompaning paper [1][2]) ), invariant towards 3D rotation of its neighborhood, are extracted from the original data by integrating over the 3D rotation group with non-linear kernels. In an interactive process, support-vector machine models are trained for each cell type using user relevance feedback. With this reference database at hand, segmentation and classification can be achieved in one step, simply by classifying each voxel and performing a connected component labelling, automatically without further human interaction. This general approach easily allows adoption of other cell types or tissue structures just by adding new training samples and re-training the model. Experiments with datasets from chicken chorioallantoic membrane show encouraging results.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540287032</identifier><identifier>ISBN: 3540287035</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540319425</identifier><identifier>EISBN: 9783540319429</identifier><identifier>DOI: 10.1007/11550518_47</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connected Component Label ; Exact sciences and technology ; Kernel Point ; Nonlinear Kernel ; Pattern recognition. Digital image processing. Computational geometry ; Training Sample ; Volumetric Dataset</subject><ispartof>Lecture notes in computer science, 2005, p.377-384</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><relation>Lecture Notes in Computer Science</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11550518_47$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11550518_47$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>310,311,781,782,786,791,792,795,4052,4053,27932,38262,41449,42518</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17115292$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Kropatsch, Walter G.</contributor><contributor>Sablatnig, Robert</contributor><contributor>Hanbury, Allan</contributor><creatorcontrib>Fehr, Janis</creatorcontrib><creatorcontrib>Ronneberger, Olaf</creatorcontrib><creatorcontrib>Kurz, Haymo</creatorcontrib><creatorcontrib>Burkhardt, Hans</creatorcontrib><title>Self-learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data Using Voxel-Wise Gray Scale Invariants</title><title>Lecture notes in computer science</title><description>We introduce and discuss a new method for segmentation and classification of cells from 3D tissue probes. The anisotropic 3D volumetric data of fluorescent marked cell nuclei is recorded by a confocal laser scanning microscope (LSM). Voxel-wise gray scale features (see accompaning paper [1][2]) ), invariant towards 3D rotation of its neighborhood, are extracted from the original data by integrating over the 3D rotation group with non-linear kernels. In an interactive process, support-vector machine models are trained for each cell type using user relevance feedback. With this reference database at hand, segmentation and classification can be achieved in one step, simply by classifying each voxel and performing a connected component labelling, automatically without further human interaction. This general approach easily allows adoption of other cell types or tissue structures just by adding new training samples and re-training the model. Experiments with datasets from chicken chorioallantoic membrane show encouraging results.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connected Component Label</subject><subject>Exact sciences and technology</subject><subject>Kernel Point</subject><subject>Nonlinear Kernel</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Training Sample</subject><subject>Volumetric Dataset</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540287032</isbn><isbn>3540287035</isbn><isbn>3540319425</isbn><isbn>9783540319429</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2005</creationdate><recordtype>book_chapter</recordtype><recordid>eNpNkD9PwzAQxc0_iQKd-AJeGBgCZzuu4xG1UCohGApljC7puTK4ThUHRL89qcrALSfde_f09GPsUsCNADC3QmgNWhRlbg7YmdI5KGFzqQ_ZQIyEyJTK7REbWlPsNFkYUPKYDUCBzKzJ1SkbpvQB_fR_SpsB284puCwQttHHFZ_Tak2xw843kWNc8nHAlLzz9f7UOD6mELLnrzqQ5z5yNeGLJnytqWt9zSfYIX9Lu6hF80Mhe_eJ-LTFLZ_XGIjP4je2HmOXLtiJw5Bo-LfP2dvD_ev4MXt6mc7Gd0_ZRupRl9WjAoBQm-UIC-NsAZWpFRiUsHROAbmKclsVlcur2gkhcovOyUqTWAJZrc7Z1T53g6mv4FqMtU_lpvVrbLelMD1UaWXvu977Ui_FFbVl1TSfqRRQ7tiX_9irX8Ktchw</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Fehr, Janis</creator><creator>Ronneberger, Olaf</creator><creator>Kurz, Haymo</creator><creator>Burkhardt, Hans</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Self-learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data Using Voxel-Wise Gray Scale Invariants</title><author>Fehr, Janis ; Ronneberger, Olaf ; Kurz, Haymo ; Burkhardt, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-c6800ea57d6a87f980b7c307a20dff30efbe49b8bf4bcf11149aff2b5e1d0e953</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connected Component Label</topic><topic>Exact sciences and technology</topic><topic>Kernel Point</topic><topic>Nonlinear Kernel</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Training Sample</topic><topic>Volumetric Dataset</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fehr, Janis</creatorcontrib><creatorcontrib>Ronneberger, Olaf</creatorcontrib><creatorcontrib>Kurz, Haymo</creatorcontrib><creatorcontrib>Burkhardt, Hans</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fehr, Janis</au><au>Ronneberger, Olaf</au><au>Kurz, Haymo</au><au>Burkhardt, Hans</au><au>Kropatsch, Walter G.</au><au>Sablatnig, Robert</au><au>Hanbury, Allan</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Self-learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data Using Voxel-Wise Gray Scale Invariants</atitle><btitle>Lecture notes in computer science</btitle><seriestitle>Lecture Notes in Computer Science</seriestitle><date>2005</date><risdate>2005</risdate><spage>377</spage><epage>384</epage><pages>377-384</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540287032</isbn><isbn>3540287035</isbn><eisbn>3540319425</eisbn><eisbn>9783540319429</eisbn><abstract>We introduce and discuss a new method for segmentation and classification of cells from 3D tissue probes. The anisotropic 3D volumetric data of fluorescent marked cell nuclei is recorded by a confocal laser scanning microscope (LSM). Voxel-wise gray scale features (see accompaning paper [1][2]) ), invariant towards 3D rotation of its neighborhood, are extracted from the original data by integrating over the 3D rotation group with non-linear kernels. In an interactive process, support-vector machine models are trained for each cell type using user relevance feedback. With this reference database at hand, segmentation and classification can be achieved in one step, simply by classifying each voxel and performing a connected component labelling, automatically without further human interaction. This general approach easily allows adoption of other cell types or tissue structures just by adding new training samples and re-training the model. Experiments with datasets from chicken chorioallantoic membrane show encouraging results.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11550518_47</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.377-384
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17115292
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connected Component Label
Exact sciences and technology
Kernel Point
Nonlinear Kernel
Pattern recognition. Digital image processing. Computational geometry
Training Sample
Volumetric Dataset
title Self-learning Segmentation and Classification of Cell-Nuclei in 3D Volumetric Data Using Voxel-Wise Gray Scale Invariants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T20%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Self-learning%20Segmentation%20and%20Classification%20of%20Cell-Nuclei%20in%203D%20Volumetric%20Data%20Using%20Voxel-Wise%20Gray%20Scale%20Invariants&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Fehr,%20Janis&rft.date=2005&rft.spage=377&rft.epage=384&rft.pages=377-384&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540287032&rft.isbn_list=3540287035&rft_id=info:doi/10.1007/11550518_47&rft_dat=%3Cpascalfrancis_sprin%3E17115292%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540319425&rft.eisbn_list=9783540319429&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true