Vision-Based 3D Object Localization Using Probabilistic Models of Appearance

The ability to accurately localize objects in an observed scene is regarded as an important precondition for many practical applications including automatic manufacturing, quality assurance, or human-robot interaction. A popular method to recognize three-dimensional objects in two-dimensional images...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Plagemann, Christian, Müller, Thomas, Burgard, Wolfram
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191
container_issue
container_start_page 184
container_title
container_volume
creator Plagemann, Christian
Müller, Thomas
Burgard, Wolfram
description The ability to accurately localize objects in an observed scene is regarded as an important precondition for many practical applications including automatic manufacturing, quality assurance, or human-robot interaction. A popular method to recognize three-dimensional objects in two-dimensional images is to apply so-called view-based approaches. In this paper, we present an approach that uses a probabilistic view-based object recognition technique for 3D localization of rigid objects. Our system generates a set of views for each object to learn an object model which is applied to identify the 6D pose of the object in the scene. In practical experiments carried out with real image data as well as rendered images, we demonstrate that our approach is robust against changing lighting conditions and high amounts of clutter.
doi_str_mv 10.1007/11550518_23
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17115225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17115225</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-3d255d682e7b70bc769749f90db9a98e628089fdc49d2907997aad98de4633b43</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxc2XRCmd-Ae8MDAEbF8c-0Yon1JQGShrZMdO5RKSKM4Cfz2uysAtN_zeu3t6hFxwds0ZUzecS8kk15WAA3IGMmfAMRfykMx4wXkGkOMRWaDSOya0YiCOyYwBExmqHE7JIsYtS5N8INWMlB8hhr7L7kz0jsI9Xdmtryda9rVpw4-ZEqTrGLoNfRt7a2xoQ5xCTV9759tI-4beDoM3o-lqf05OGtNGv_jbc7J-fHhfPmfl6ulleVtmg-A4ZeCElK7QwiurmK1VkbJhg8xZNKh9ITTT2Lg6RyeQKURljEPtfF4A2Bzm5HJ_dzAxxWx2z0OshjF8mfG74ir1JIRMuqu9LibUbfxY2b7_jBVn1a7O6l-d8AvTDGBx</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vision-Based 3D Object Localization Using Probabilistic Models of Appearance</title><source>Springer Books</source><creator>Plagemann, Christian ; Müller, Thomas ; Burgard, Wolfram</creator><contributor>Kropatsch, Walter G. ; Sablatnig, Robert ; Hanbury, Allan</contributor><creatorcontrib>Plagemann, Christian ; Müller, Thomas ; Burgard, Wolfram ; Kropatsch, Walter G. ; Sablatnig, Robert ; Hanbury, Allan</creatorcontrib><description>The ability to accurately localize objects in an observed scene is regarded as an important precondition for many practical applications including automatic manufacturing, quality assurance, or human-robot interaction. A popular method to recognize three-dimensional objects in two-dimensional images is to apply so-called view-based approaches. In this paper, we present an approach that uses a probabilistic view-based object recognition technique for 3D localization of rigid objects. Our system generates a set of views for each object to learn an object model which is applied to identify the 6D pose of the object in the scene. In practical experiments carried out with real image data as well as rendered images, we demonstrate that our approach is robust against changing lighting conditions and high amounts of clutter.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540287032</identifier><identifier>ISBN: 3540287035</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540319425</identifier><identifier>EISBN: 9783540319429</identifier><identifier>DOI: 10.1007/11550518_23</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Feature Pairing ; Model View ; Probabilistic Alignment ; Specular Surface ; Training Image</subject><ispartof>Lecture notes in computer science, 2005, p.184-191</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11550518_23$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11550518_23$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4048,4049,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17115225$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Kropatsch, Walter G.</contributor><contributor>Sablatnig, Robert</contributor><contributor>Hanbury, Allan</contributor><creatorcontrib>Plagemann, Christian</creatorcontrib><creatorcontrib>Müller, Thomas</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><title>Vision-Based 3D Object Localization Using Probabilistic Models of Appearance</title><title>Lecture notes in computer science</title><description>The ability to accurately localize objects in an observed scene is regarded as an important precondition for many practical applications including automatic manufacturing, quality assurance, or human-robot interaction. A popular method to recognize three-dimensional objects in two-dimensional images is to apply so-called view-based approaches. In this paper, we present an approach that uses a probabilistic view-based object recognition technique for 3D localization of rigid objects. Our system generates a set of views for each object to learn an object model which is applied to identify the 6D pose of the object in the scene. In practical experiments carried out with real image data as well as rendered images, we demonstrate that our approach is robust against changing lighting conditions and high amounts of clutter.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Feature Pairing</subject><subject>Model View</subject><subject>Probabilistic Alignment</subject><subject>Specular Surface</subject><subject>Training Image</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540287032</isbn><isbn>3540287035</isbn><isbn>3540319425</isbn><isbn>9783540319429</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkL1PwzAQxc2XRCmd-Ae8MDAEbF8c-0Yon1JQGShrZMdO5RKSKM4Cfz2uysAtN_zeu3t6hFxwds0ZUzecS8kk15WAA3IGMmfAMRfykMx4wXkGkOMRWaDSOya0YiCOyYwBExmqHE7JIsYtS5N8INWMlB8hhr7L7kz0jsI9Xdmtryda9rVpw4-ZEqTrGLoNfRt7a2xoQ5xCTV9759tI-4beDoM3o-lqf05OGtNGv_jbc7J-fHhfPmfl6ulleVtmg-A4ZeCElK7QwiurmK1VkbJhg8xZNKh9ITTT2Lg6RyeQKURljEPtfF4A2Bzm5HJ_dzAxxWx2z0OshjF8mfG74ir1JIRMuqu9LibUbfxY2b7_jBVn1a7O6l-d8AvTDGBx</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Plagemann, Christian</creator><creator>Müller, Thomas</creator><creator>Burgard, Wolfram</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Vision-Based 3D Object Localization Using Probabilistic Models of Appearance</title><author>Plagemann, Christian ; Müller, Thomas ; Burgard, Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-3d255d682e7b70bc769749f90db9a98e628089fdc49d2907997aad98de4633b43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Feature Pairing</topic><topic>Model View</topic><topic>Probabilistic Alignment</topic><topic>Specular Surface</topic><topic>Training Image</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plagemann, Christian</creatorcontrib><creatorcontrib>Müller, Thomas</creatorcontrib><creatorcontrib>Burgard, Wolfram</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plagemann, Christian</au><au>Müller, Thomas</au><au>Burgard, Wolfram</au><au>Kropatsch, Walter G.</au><au>Sablatnig, Robert</au><au>Hanbury, Allan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vision-Based 3D Object Localization Using Probabilistic Models of Appearance</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>184</spage><epage>191</epage><pages>184-191</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540287032</isbn><isbn>3540287035</isbn><eisbn>3540319425</eisbn><eisbn>9783540319429</eisbn><abstract>The ability to accurately localize objects in an observed scene is regarded as an important precondition for many practical applications including automatic manufacturing, quality assurance, or human-robot interaction. A popular method to recognize three-dimensional objects in two-dimensional images is to apply so-called view-based approaches. In this paper, we present an approach that uses a probabilistic view-based object recognition technique for 3D localization of rigid objects. Our system generates a set of views for each object to learn an object model which is applied to identify the 6D pose of the object in the scene. In practical experiments carried out with real image data as well as rendered images, we demonstrate that our approach is robust against changing lighting conditions and high amounts of clutter.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11550518_23</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.184-191
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17115225
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Feature Pairing
Model View
Probabilistic Alignment
Specular Surface
Training Image
title Vision-Based 3D Object Localization Using Probabilistic Models of Appearance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vision-Based%203D%20Object%20Localization%20Using%20Probabilistic%20Models%20of%20Appearance&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Plagemann,%20Christian&rft.date=2005&rft.spage=184&rft.epage=191&rft.pages=184-191&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540287032&rft.isbn_list=3540287035&rft_id=info:doi/10.1007/11550518_23&rft_dat=%3Cpascalfrancis_sprin%3E17115225%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540319425&rft.eisbn_list=9783540319429&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true