An Efficient Feature Extraction Method for the Middle-Age Character Recognition

In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alirezaee, Shahpour, Aghaeinia, Hasan, Faez, Karim, Fard, Alireza Shayesteh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006
container_issue
container_start_page 998
container_title
container_volume
creator Alirezaee, Shahpour
Aghaeinia, Hasan
Faez, Karim
Fard, Alireza Shayesteh
description In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight function. To evaluate the performance of the proposed feature, experimental studies are carried out on the historic Middle-Age Persian characters. The numerical results show 96.8% recognition rate on the selected database with the weighted Pseudo-Zernike feature (with order 10) and 65, 111,16 neurons for the input, hidden, and output layers while this amount for the original Pseudo-Zernike is 93%.
doi_str_mv 10.1007/11538356_103
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17095290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17095290</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-f618b1dea24768ef9ee15c23c8a2071285888b4480eff61297768c8b6308a613</originalsourceid><addsrcrecordid>eNpN0D9PwzAQBXDzT6It3fgAXliQAnd2EttjVbWA1KoS6h45zrkNlKSygwTfvonKwHQ6vZ_e8Bi7R3hCAPWMmEkts7xAkBdsalT_pCDRgNKXbIQ5YiJlaq7YeAiEFkLBNRuBBJEYlcpbNo7xAwCEMmLENrOGL7yvXU1Nx5dku-9AfPHTBeu6um34mrp9W3HfBt7tia_rqjpQMtsRn-_tgCjwd3LtrqkHf8duvD1Emv7dCdsuF9v5a7LavLzNZ6vkKAR0ic9Rl1iRFanKNXlDhJkT0mkrQKHQmda6TFMN5HsrjOqZ02UuQdsc5YQ9nGuPNjp78ME2ro7FMdRfNvwWqMBkwkDvHs8u9lGzo1CUbfsZ-_WKYc7i_5zyBI8QYK0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Efficient Feature Extraction Method for the Middle-Age Character Recognition</title><source>Springer Books</source><creator>Alirezaee, Shahpour ; Aghaeinia, Hasan ; Faez, Karim ; Fard, Alireza Shayesteh</creator><contributor>Zhang, Xiao-Ping ; Huang, Guang-Bin ; Huang, De-Shuang</contributor><creatorcontrib>Alirezaee, Shahpour ; Aghaeinia, Hasan ; Faez, Karim ; Fard, Alireza Shayesteh ; Zhang, Xiao-Ping ; Huang, Guang-Bin ; Huang, De-Shuang</creatorcontrib><description>In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight function. To evaluate the performance of the proposed feature, experimental studies are carried out on the historic Middle-Age Persian characters. The numerical results show 96.8% recognition rate on the selected database with the weighted Pseudo-Zernike feature (with order 10) and 65, 111,16 neurons for the input, hidden, and output layers while this amount for the original Pseudo-Zernike is 93%.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540282270</identifier><identifier>ISBN: 9783540282273</identifier><identifier>ISBN: 3540282262</identifier><identifier>ISBN: 9783540282266</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540319078</identifier><identifier>EISBN: 3540319077</identifier><identifier>DOI: 10.1007/11538356_103</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Character Recognition ; Computer science; control theory; systems ; Exact sciences and technology ; Fisher Linear Discriminant ; Handwritten Character ; Hide Layer Neuron ; Recognition Rate</subject><ispartof>Advances in Intelligent Computing, 2005, p.998-1006</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11538356_103$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11538356_103$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17095290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zhang, Xiao-Ping</contributor><contributor>Huang, Guang-Bin</contributor><contributor>Huang, De-Shuang</contributor><creatorcontrib>Alirezaee, Shahpour</creatorcontrib><creatorcontrib>Aghaeinia, Hasan</creatorcontrib><creatorcontrib>Faez, Karim</creatorcontrib><creatorcontrib>Fard, Alireza Shayesteh</creatorcontrib><title>An Efficient Feature Extraction Method for the Middle-Age Character Recognition</title><title>Advances in Intelligent Computing</title><description>In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight function. To evaluate the performance of the proposed feature, experimental studies are carried out on the historic Middle-Age Persian characters. The numerical results show 96.8% recognition rate on the selected database with the weighted Pseudo-Zernike feature (with order 10) and 65, 111,16 neurons for the input, hidden, and output layers while this amount for the original Pseudo-Zernike is 93%.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Character Recognition</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fisher Linear Discriminant</subject><subject>Handwritten Character</subject><subject>Hide Layer Neuron</subject><subject>Recognition Rate</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540282270</isbn><isbn>9783540282273</isbn><isbn>3540282262</isbn><isbn>9783540282266</isbn><isbn>9783540319078</isbn><isbn>3540319077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpN0D9PwzAQBXDzT6It3fgAXliQAnd2EttjVbWA1KoS6h45zrkNlKSygwTfvonKwHQ6vZ_e8Bi7R3hCAPWMmEkts7xAkBdsalT_pCDRgNKXbIQ5YiJlaq7YeAiEFkLBNRuBBJEYlcpbNo7xAwCEMmLENrOGL7yvXU1Nx5dku-9AfPHTBeu6um34mrp9W3HfBt7tia_rqjpQMtsRn-_tgCjwd3LtrqkHf8duvD1Emv7dCdsuF9v5a7LavLzNZ6vkKAR0ic9Rl1iRFanKNXlDhJkT0mkrQKHQmda6TFMN5HsrjOqZ02UuQdsc5YQ9nGuPNjp78ME2ro7FMdRfNvwWqMBkwkDvHs8u9lGzo1CUbfsZ-_WKYc7i_5zyBI8QYK0</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Alirezaee, Shahpour</creator><creator>Aghaeinia, Hasan</creator><creator>Faez, Karim</creator><creator>Fard, Alireza Shayesteh</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>An Efficient Feature Extraction Method for the Middle-Age Character Recognition</title><author>Alirezaee, Shahpour ; Aghaeinia, Hasan ; Faez, Karim ; Fard, Alireza Shayesteh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-f618b1dea24768ef9ee15c23c8a2071285888b4480eff61297768c8b6308a613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Character Recognition</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fisher Linear Discriminant</topic><topic>Handwritten Character</topic><topic>Hide Layer Neuron</topic><topic>Recognition Rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alirezaee, Shahpour</creatorcontrib><creatorcontrib>Aghaeinia, Hasan</creatorcontrib><creatorcontrib>Faez, Karim</creatorcontrib><creatorcontrib>Fard, Alireza Shayesteh</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alirezaee, Shahpour</au><au>Aghaeinia, Hasan</au><au>Faez, Karim</au><au>Fard, Alireza Shayesteh</au><au>Zhang, Xiao-Ping</au><au>Huang, Guang-Bin</au><au>Huang, De-Shuang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Efficient Feature Extraction Method for the Middle-Age Character Recognition</atitle><btitle>Advances in Intelligent Computing</btitle><date>2005</date><risdate>2005</risdate><spage>998</spage><epage>1006</epage><pages>998-1006</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540282270</isbn><isbn>9783540282273</isbn><isbn>3540282262</isbn><isbn>9783540282266</isbn><eisbn>9783540319078</eisbn><eisbn>3540319077</eisbn><abstract>In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight function. To evaluate the performance of the proposed feature, experimental studies are carried out on the historic Middle-Age Persian characters. The numerical results show 96.8% recognition rate on the selected database with the weighted Pseudo-Zernike feature (with order 10) and 65, 111,16 neurons for the input, hidden, and output layers while this amount for the original Pseudo-Zernike is 93%.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11538356_103</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Intelligent Computing, 2005, p.998-1006
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17095290
source Springer Books
subjects Applied sciences
Artificial intelligence
Character Recognition
Computer science
control theory
systems
Exact sciences and technology
Fisher Linear Discriminant
Handwritten Character
Hide Layer Neuron
Recognition Rate
title An Efficient Feature Extraction Method for the Middle-Age Character Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Efficient%20Feature%20Extraction%20Method%20for%20the%20Middle-Age%20Character%20Recognition&rft.btitle=Advances%20in%20Intelligent%20Computing&rft.au=Alirezaee,%20Shahpour&rft.date=2005&rft.spage=998&rft.epage=1006&rft.pages=998-1006&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540282270&rft.isbn_list=9783540282273&rft.isbn_list=3540282262&rft.isbn_list=9783540282266&rft_id=info:doi/10.1007/11538356_103&rft_dat=%3Cpascalfrancis_sprin%3E17095290%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540319078&rft.eisbn_list=3540319077&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true