An Efficient Feature Extraction Method for the Middle-Age Character Recognition
In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1006 |
---|---|
container_issue | |
container_start_page | 998 |
container_title | |
container_volume | |
creator | Alirezaee, Shahpour Aghaeinia, Hasan Faez, Karim Fard, Alireza Shayesteh |
description | In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight function. To evaluate the performance of the proposed feature, experimental studies are carried out on the historic Middle-Age Persian characters. The numerical results show 96.8% recognition rate on the selected database with the weighted Pseudo-Zernike feature (with order 10) and 65, 111,16 neurons for the input, hidden, and output layers while this amount for the original Pseudo-Zernike is 93%. |
doi_str_mv | 10.1007/11538356_103 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17095290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17095290</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-f618b1dea24768ef9ee15c23c8a2071285888b4480eff61297768c8b6308a613</originalsourceid><addsrcrecordid>eNpN0D9PwzAQBXDzT6It3fgAXliQAnd2EttjVbWA1KoS6h45zrkNlKSygwTfvonKwHQ6vZ_e8Bi7R3hCAPWMmEkts7xAkBdsalT_pCDRgNKXbIQ5YiJlaq7YeAiEFkLBNRuBBJEYlcpbNo7xAwCEMmLENrOGL7yvXU1Nx5dku-9AfPHTBeu6um34mrp9W3HfBt7tia_rqjpQMtsRn-_tgCjwd3LtrqkHf8duvD1Emv7dCdsuF9v5a7LavLzNZ6vkKAR0ic9Rl1iRFanKNXlDhJkT0mkrQKHQmda6TFMN5HsrjOqZ02UuQdsc5YQ9nGuPNjp78ME2ro7FMdRfNvwWqMBkwkDvHs8u9lGzo1CUbfsZ-_WKYc7i_5zyBI8QYK0</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An Efficient Feature Extraction Method for the Middle-Age Character Recognition</title><source>Springer Books</source><creator>Alirezaee, Shahpour ; Aghaeinia, Hasan ; Faez, Karim ; Fard, Alireza Shayesteh</creator><contributor>Zhang, Xiao-Ping ; Huang, Guang-Bin ; Huang, De-Shuang</contributor><creatorcontrib>Alirezaee, Shahpour ; Aghaeinia, Hasan ; Faez, Karim ; Fard, Alireza Shayesteh ; Zhang, Xiao-Ping ; Huang, Guang-Bin ; Huang, De-Shuang</creatorcontrib><description>In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight function. To evaluate the performance of the proposed feature, experimental studies are carried out on the historic Middle-Age Persian characters. The numerical results show 96.8% recognition rate on the selected database with the weighted Pseudo-Zernike feature (with order 10) and 65, 111,16 neurons for the input, hidden, and output layers while this amount for the original Pseudo-Zernike is 93%.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540282270</identifier><identifier>ISBN: 9783540282273</identifier><identifier>ISBN: 3540282262</identifier><identifier>ISBN: 9783540282266</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540319078</identifier><identifier>EISBN: 3540319077</identifier><identifier>DOI: 10.1007/11538356_103</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Character Recognition ; Computer science; control theory; systems ; Exact sciences and technology ; Fisher Linear Discriminant ; Handwritten Character ; Hide Layer Neuron ; Recognition Rate</subject><ispartof>Advances in Intelligent Computing, 2005, p.998-1006</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11538356_103$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11538356_103$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17095290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zhang, Xiao-Ping</contributor><contributor>Huang, Guang-Bin</contributor><contributor>Huang, De-Shuang</contributor><creatorcontrib>Alirezaee, Shahpour</creatorcontrib><creatorcontrib>Aghaeinia, Hasan</creatorcontrib><creatorcontrib>Faez, Karim</creatorcontrib><creatorcontrib>Fard, Alireza Shayesteh</creatorcontrib><title>An Efficient Feature Extraction Method for the Middle-Age Character Recognition</title><title>Advances in Intelligent Computing</title><description>In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight function. To evaluate the performance of the proposed feature, experimental studies are carried out on the historic Middle-Age Persian characters. The numerical results show 96.8% recognition rate on the selected database with the weighted Pseudo-Zernike feature (with order 10) and 65, 111,16 neurons for the input, hidden, and output layers while this amount for the original Pseudo-Zernike is 93%.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Character Recognition</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fisher Linear Discriminant</subject><subject>Handwritten Character</subject><subject>Hide Layer Neuron</subject><subject>Recognition Rate</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540282270</isbn><isbn>9783540282273</isbn><isbn>3540282262</isbn><isbn>9783540282266</isbn><isbn>9783540319078</isbn><isbn>3540319077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpN0D9PwzAQBXDzT6It3fgAXliQAnd2EttjVbWA1KoS6h45zrkNlKSygwTfvonKwHQ6vZ_e8Bi7R3hCAPWMmEkts7xAkBdsalT_pCDRgNKXbIQ5YiJlaq7YeAiEFkLBNRuBBJEYlcpbNo7xAwCEMmLENrOGL7yvXU1Nx5dku-9AfPHTBeu6um34mrp9W3HfBt7tia_rqjpQMtsRn-_tgCjwd3LtrqkHf8duvD1Emv7dCdsuF9v5a7LavLzNZ6vkKAR0ic9Rl1iRFanKNXlDhJkT0mkrQKHQmda6TFMN5HsrjOqZ02UuQdsc5YQ9nGuPNjp78ME2ro7FMdRfNvwWqMBkwkDvHs8u9lGzo1CUbfsZ-_WKYc7i_5zyBI8QYK0</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Alirezaee, Shahpour</creator><creator>Aghaeinia, Hasan</creator><creator>Faez, Karim</creator><creator>Fard, Alireza Shayesteh</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>An Efficient Feature Extraction Method for the Middle-Age Character Recognition</title><author>Alirezaee, Shahpour ; Aghaeinia, Hasan ; Faez, Karim ; Fard, Alireza Shayesteh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-f618b1dea24768ef9ee15c23c8a2071285888b4480eff61297768c8b6308a613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Character Recognition</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fisher Linear Discriminant</topic><topic>Handwritten Character</topic><topic>Hide Layer Neuron</topic><topic>Recognition Rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alirezaee, Shahpour</creatorcontrib><creatorcontrib>Aghaeinia, Hasan</creatorcontrib><creatorcontrib>Faez, Karim</creatorcontrib><creatorcontrib>Fard, Alireza Shayesteh</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alirezaee, Shahpour</au><au>Aghaeinia, Hasan</au><au>Faez, Karim</au><au>Fard, Alireza Shayesteh</au><au>Zhang, Xiao-Ping</au><au>Huang, Guang-Bin</au><au>Huang, De-Shuang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An Efficient Feature Extraction Method for the Middle-Age Character Recognition</atitle><btitle>Advances in Intelligent Computing</btitle><date>2005</date><risdate>2005</risdate><spage>998</spage><epage>1006</epage><pages>998-1006</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540282270</isbn><isbn>9783540282273</isbn><isbn>3540282262</isbn><isbn>9783540282266</isbn><eisbn>9783540319078</eisbn><eisbn>3540319077</eisbn><abstract>In this paper, we introduce an efficient feature extraction method for character recognition. The EA strategy is used to maximize the Fisher linear discriminant function (FLD) over a high order Pseudo-Zernike moment. The argument, which maximizes the FLD criteria, is selected as the proposed weight function. To evaluate the performance of the proposed feature, experimental studies are carried out on the historic Middle-Age Persian characters. The numerical results show 96.8% recognition rate on the selected database with the weighted Pseudo-Zernike feature (with order 10) and 65, 111,16 neurons for the input, hidden, and output layers while this amount for the original Pseudo-Zernike is 93%.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11538356_103</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Intelligent Computing, 2005, p.998-1006 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17095290 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Character Recognition Computer science control theory systems Exact sciences and technology Fisher Linear Discriminant Handwritten Character Hide Layer Neuron Recognition Rate |
title | An Efficient Feature Extraction Method for the Middle-Age Character Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20Efficient%20Feature%20Extraction%20Method%20for%20the%20Middle-Age%20Character%20Recognition&rft.btitle=Advances%20in%20Intelligent%20Computing&rft.au=Alirezaee,%20Shahpour&rft.date=2005&rft.spage=998&rft.epage=1006&rft.pages=998-1006&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540282270&rft.isbn_list=9783540282273&rft.isbn_list=3540282262&rft.isbn_list=9783540282266&rft_id=info:doi/10.1007/11538356_103&rft_dat=%3Cpascalfrancis_sprin%3E17095290%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540319078&rft.eisbn_list=3540319077&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |