A DNA Based Evolutionary Algorithm for the Minimal Set Cover Problem

With the birth of DNA computing, Paun et al. proposed an elegant algorithm to this problem based on the sticky model proposed by Roweis. However, the drawback of this algorithm is that the “exponential curse” is hard to overcome, and therefore its application to large instance is limited. In this s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liu, Wenbin, Zhu, Xiangou, Xu, Guandong, Zhang, Qiang, Gao, Lin
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 89
container_issue
container_start_page 80
container_title
container_volume
creator Liu, Wenbin
Zhu, Xiangou
Xu, Guandong
Zhang, Qiang
Gao, Lin
description With the birth of DNA computing, Paun et al. proposed an elegant algorithm to this problem based on the sticky model proposed by Roweis. However, the drawback of this algorithm is that the “exponential curse” is hard to overcome, and therefore its application to large instance is limited. In this s paper, we present a DNA based evolutionary algorithm to solve this problem, which takes advantage of both the massive parallelism and the evolution strategy by traditional EAs. The fitness of individuals is defined as the negative value of their length. Both the crossover and mutation can be implemented in a reshuffle process respectively. We also present a short discussion about population size, mutation probability, crossover probability, and genetic operations over multiple points. In the end, we also present some problems needed to be further considered in the future.
doi_str_mv 10.1007/11538356_9
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17095213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17095213</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-25eac4a4ef8bc9780de6b5db0cb93117321223ff299ef084210124fa27b064603</originalsourceid><addsrcrecordid>eNpFkMtOwzAURM1Loi3d8AXeILEJ3HvtxPEytOUhlYcErCMntdtAGldOqNS_J1WRWM1IczQaDWOXCDcIoG4RY5GKOMn1ERtr1VsJAjWo9JgNMEGMhJD6hA33AaVECk7ZAARQpJUU52zYtl8AQErTgE0zPn3J-J1p7YLPtr7-6SrfmLDjWb30oepWa-584N3K8ueqqdam5u-24xO_tYG_BV_Udn3BzpypWzv-0xH7vJ99TB6j-evD0ySbRxvCtIsotqaURlqXFmW_HBY2KeJFAWWhBaIShETCOdLaOkglISBJZ0gVkMgExIhdHXo3pi1N7YJpyqrNN6GfFXY5KtAxoei56wPX9lGztCEvvP9uc4R8f2H-f6H4BY4wW-o</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A DNA Based Evolutionary Algorithm for the Minimal Set Cover Problem</title><source>Springer Books</source><creator>Liu, Wenbin ; Zhu, Xiangou ; Xu, Guandong ; Zhang, Qiang ; Gao, Lin</creator><contributor>Zhang, Xiao-Ping ; Huang, Guang-Bin ; Huang, De-Shuang</contributor><creatorcontrib>Liu, Wenbin ; Zhu, Xiangou ; Xu, Guandong ; Zhang, Qiang ; Gao, Lin ; Zhang, Xiao-Ping ; Huang, Guang-Bin ; Huang, De-Shuang</creatorcontrib><description>With the birth of DNA computing, Paun et al. proposed an elegant algorithm to this problem based on the sticky model proposed by Roweis. However, the drawback of this algorithm is that the “exponential curse” is hard to overcome, and therefore its application to large instance is limited. In this s paper, we present a DNA based evolutionary algorithm to solve this problem, which takes advantage of both the massive parallelism and the evolution strategy by traditional EAs. The fitness of individuals is defined as the negative value of their length. Both the crossover and mutation can be implemented in a reshuffle process respectively. We also present a short discussion about population size, mutation probability, crossover probability, and genetic operations over multiple points. In the end, we also present some problems needed to be further considered in the future.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540282270</identifier><identifier>ISBN: 9783540282273</identifier><identifier>ISBN: 3540282262</identifier><identifier>ISBN: 9783540282266</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540319078</identifier><identifier>EISBN: 3540319077</identifier><identifier>DOI: 10.1007/11538356_9</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Crossover Probability ; Evolutionary Algorithm ; Exact sciences and technology ; Genetic Operation ; Massive Parallelism ; Peptide Nucleic Acid</subject><ispartof>Advances in Intelligent Computing, 2005, p.80-89</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11538356_9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11538356_9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17095213$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Zhang, Xiao-Ping</contributor><contributor>Huang, Guang-Bin</contributor><contributor>Huang, De-Shuang</contributor><creatorcontrib>Liu, Wenbin</creatorcontrib><creatorcontrib>Zhu, Xiangou</creatorcontrib><creatorcontrib>Xu, Guandong</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><title>A DNA Based Evolutionary Algorithm for the Minimal Set Cover Problem</title><title>Advances in Intelligent Computing</title><description>With the birth of DNA computing, Paun et al. proposed an elegant algorithm to this problem based on the sticky model proposed by Roweis. However, the drawback of this algorithm is that the “exponential curse” is hard to overcome, and therefore its application to large instance is limited. In this s paper, we present a DNA based evolutionary algorithm to solve this problem, which takes advantage of both the massive parallelism and the evolution strategy by traditional EAs. The fitness of individuals is defined as the negative value of their length. Both the crossover and mutation can be implemented in a reshuffle process respectively. We also present a short discussion about population size, mutation probability, crossover probability, and genetic operations over multiple points. In the end, we also present some problems needed to be further considered in the future.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Crossover Probability</subject><subject>Evolutionary Algorithm</subject><subject>Exact sciences and technology</subject><subject>Genetic Operation</subject><subject>Massive Parallelism</subject><subject>Peptide Nucleic Acid</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540282270</isbn><isbn>9783540282273</isbn><isbn>3540282262</isbn><isbn>9783540282266</isbn><isbn>9783540319078</isbn><isbn>3540319077</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkMtOwzAURM1Loi3d8AXeILEJ3HvtxPEytOUhlYcErCMntdtAGldOqNS_J1WRWM1IczQaDWOXCDcIoG4RY5GKOMn1ERtr1VsJAjWo9JgNMEGMhJD6hA33AaVECk7ZAARQpJUU52zYtl8AQErTgE0zPn3J-J1p7YLPtr7-6SrfmLDjWb30oepWa-584N3K8ueqqdam5u-24xO_tYG_BV_Udn3BzpypWzv-0xH7vJ99TB6j-evD0ySbRxvCtIsotqaURlqXFmW_HBY2KeJFAWWhBaIShETCOdLaOkglISBJZ0gVkMgExIhdHXo3pi1N7YJpyqrNN6GfFXY5KtAxoei56wPX9lGztCEvvP9uc4R8f2H-f6H4BY4wW-o</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Liu, Wenbin</creator><creator>Zhu, Xiangou</creator><creator>Xu, Guandong</creator><creator>Zhang, Qiang</creator><creator>Gao, Lin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>A DNA Based Evolutionary Algorithm for the Minimal Set Cover Problem</title><author>Liu, Wenbin ; Zhu, Xiangou ; Xu, Guandong ; Zhang, Qiang ; Gao, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-25eac4a4ef8bc9780de6b5db0cb93117321223ff299ef084210124fa27b064603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Crossover Probability</topic><topic>Evolutionary Algorithm</topic><topic>Exact sciences and technology</topic><topic>Genetic Operation</topic><topic>Massive Parallelism</topic><topic>Peptide Nucleic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Wenbin</creatorcontrib><creatorcontrib>Zhu, Xiangou</creatorcontrib><creatorcontrib>Xu, Guandong</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Gao, Lin</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Wenbin</au><au>Zhu, Xiangou</au><au>Xu, Guandong</au><au>Zhang, Qiang</au><au>Gao, Lin</au><au>Zhang, Xiao-Ping</au><au>Huang, Guang-Bin</au><au>Huang, De-Shuang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A DNA Based Evolutionary Algorithm for the Minimal Set Cover Problem</atitle><btitle>Advances in Intelligent Computing</btitle><date>2005</date><risdate>2005</risdate><spage>80</spage><epage>89</epage><pages>80-89</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540282270</isbn><isbn>9783540282273</isbn><isbn>3540282262</isbn><isbn>9783540282266</isbn><eisbn>9783540319078</eisbn><eisbn>3540319077</eisbn><abstract>With the birth of DNA computing, Paun et al. proposed an elegant algorithm to this problem based on the sticky model proposed by Roweis. However, the drawback of this algorithm is that the “exponential curse” is hard to overcome, and therefore its application to large instance is limited. In this s paper, we present a DNA based evolutionary algorithm to solve this problem, which takes advantage of both the massive parallelism and the evolution strategy by traditional EAs. The fitness of individuals is defined as the negative value of their length. Both the crossover and mutation can be implemented in a reshuffle process respectively. We also present a short discussion about population size, mutation probability, crossover probability, and genetic operations over multiple points. In the end, we also present some problems needed to be further considered in the future.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11538356_9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Advances in Intelligent Computing, 2005, p.80-89
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17095213
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Crossover Probability
Evolutionary Algorithm
Exact sciences and technology
Genetic Operation
Massive Parallelism
Peptide Nucleic Acid
title A DNA Based Evolutionary Algorithm for the Minimal Set Cover Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20DNA%20Based%20Evolutionary%20Algorithm%20for%20the%20Minimal%20Set%20Cover%20Problem&rft.btitle=Advances%20in%20Intelligent%20Computing&rft.au=Liu,%20Wenbin&rft.date=2005&rft.spage=80&rft.epage=89&rft.pages=80-89&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540282270&rft.isbn_list=9783540282273&rft.isbn_list=3540282262&rft.isbn_list=9783540282266&rft_id=info:doi/10.1007/11538356_9&rft_dat=%3Cpascalfrancis_sprin%3E17095213%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540319078&rft.eisbn_list=3540319077&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true