On Fitting Finite Dirichlet Mixture Using ECM and MML
Gaussian mixture models are being increasingly used in pattern recognition applications. However, for a set of data other distributions can give better results. In this paper, we consider Dirichlet mixtures which offer many advantages [1]. The use of the ECM algorithm and the minimum message length...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gaussian mixture models are being increasingly used in pattern recognition applications. However, for a set of data other distributions can give better results. In this paper, we consider Dirichlet mixtures which offer many advantages [1]. The use of the ECM algorithm and the minimum message length (MML) approach to fit this mixture model is described. Experimental results involve the summarization of texture image databases. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11551188_19 |