On Fitting Finite Dirichlet Mixture Using ECM and MML

Gaussian mixture models are being increasingly used in pattern recognition applications. However, for a set of data other distributions can give better results. In this paper, we consider Dirichlet mixtures which offer many advantages [1]. The use of the ECM algorithm and the minimum message length...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bouguila, Nizar, Ziou, Djemel
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gaussian mixture models are being increasingly used in pattern recognition applications. However, for a set of data other distributions can give better results. In this paper, we consider Dirichlet mixtures which offer many advantages [1]. The use of the ECM algorithm and the minimum message length (MML) approach to fit this mixture model is described. Experimental results involve the summarization of texture image databases.
ISSN:0302-9743
1611-3349
DOI:10.1007/11551188_19