Binding Signatures for Generic Contexts

Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Power, John, Tanaka, Miki
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue
container_start_page 308
container_title
container_volume
creator Power, John
Tanaka, Miki
description Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders for contexts, with leading examples given by the untyped ordinary and linear λ-calculi. Here, we give an axiomatic framework that includes their works on cartesian and linear binders, and moreover their assorted variants, notably including the combined cartesian and linear binders of the Logic of Bunched Implications. We provide a definition of binding signature in general, extending the previous ones and yielding a definition for the first time for the example of Bunched Implications, and we characterise the presheaf of terms generated from the binding signature. The characterisation requires a subtle analysis of a strength of a binding signature over a substitution monoidal structure on the presheaf category.
doi_str_mv 10.1007/11417170_23
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17027568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17027568</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-76a73c7dae142293ad2f2f27daef23ca653887ec486423fdbd016bc5f70cd9a93</originalsourceid><addsrcrecordid>eNpNUEtLAzEYjC-wrZ78A3sR8bD6PbKbzVGLVqHgQT2HNJuU9ZEtyQr6791SDzKHgZlhYEaIM4QrBFDXiBIVKjDEe2LKlQQmQNnsiwnWiCWz1Ac7g6pKMx6KCTBQqZXkYzHN-Q0ASGmaiIvbLrZdXBfP3Tra4Sv5XIQ-FQsffepcMe_j4L-HfCKOgv3I_vSPZ-L1_u5l_lAunxaP85tluSHUQ6lqq9ip1nqURJptS2HEVgjEztYVN43yTja1JA7tqgWsV64KClyrreaZON_1bmx29iMkG12XzSZ1nzb9mHE1qapuxtzlLpdHK659Mqu-f88GwWw_Mv8-4l_AN1L6</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Binding Signatures for Generic Contexts</title><source>Springer Books</source><creator>Power, John ; Tanaka, Miki</creator><contributor>Urzyczyn, Paweł</contributor><creatorcontrib>Power, John ; Tanaka, Miki ; Urzyczyn, Paweł</creatorcontrib><description>Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders for contexts, with leading examples given by the untyped ordinary and linear λ-calculi. Here, we give an axiomatic framework that includes their works on cartesian and linear binders, and moreover their assorted variants, notably including the combined cartesian and linear binders of the Logic of Bunched Implications. We provide a definition of binding signature in general, extending the previous ones and yielding a definition for the first time for the example of Bunched Implications, and we characterise the presheaf of terms generated from the binding signature. The characterisation requires a subtle analysis of a strength of a binding signature over a substitution monoidal structure on the presheaf category.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540255931</identifier><identifier>ISBN: 9783540255932</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320148</identifier><identifier>EISBN: 9783540320142</identifier><identifier>DOI: 10.1007/11417170_23</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abstract Syntax ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Binding Signature ; Computer science; control theory; systems ; Exact sciences and technology ; Linear Binder ; Pointed Object ; Small Category ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2005, p.308-323</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11417170_23$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11417170_23$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17027568$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Urzyczyn, Paweł</contributor><creatorcontrib>Power, John</creatorcontrib><creatorcontrib>Tanaka, Miki</creatorcontrib><title>Binding Signatures for Generic Contexts</title><title>Lecture notes in computer science</title><description>Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders for contexts, with leading examples given by the untyped ordinary and linear λ-calculi. Here, we give an axiomatic framework that includes their works on cartesian and linear binders, and moreover their assorted variants, notably including the combined cartesian and linear binders of the Logic of Bunched Implications. We provide a definition of binding signature in general, extending the previous ones and yielding a definition for the first time for the example of Bunched Implications, and we characterise the presheaf of terms generated from the binding signature. The characterisation requires a subtle analysis of a strength of a binding signature over a substitution monoidal structure on the presheaf category.</description><subject>Abstract Syntax</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Binding Signature</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Linear Binder</subject><subject>Pointed Object</subject><subject>Small Category</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540255931</isbn><isbn>9783540255932</isbn><isbn>3540320148</isbn><isbn>9783540320142</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUEtLAzEYjC-wrZ78A3sR8bD6PbKbzVGLVqHgQT2HNJuU9ZEtyQr6791SDzKHgZlhYEaIM4QrBFDXiBIVKjDEe2LKlQQmQNnsiwnWiCWz1Ac7g6pKMx6KCTBQqZXkYzHN-Q0ASGmaiIvbLrZdXBfP3Tra4Sv5XIQ-FQsffepcMe_j4L-HfCKOgv3I_vSPZ-L1_u5l_lAunxaP85tluSHUQ6lqq9ip1nqURJptS2HEVgjEztYVN43yTja1JA7tqgWsV64KClyrreaZON_1bmx29iMkG12XzSZ1nzb9mHE1qapuxtzlLpdHK659Mqu-f88GwWw_Mv8-4l_AN1L6</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Power, John</creator><creator>Tanaka, Miki</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Binding Signatures for Generic Contexts</title><author>Power, John ; Tanaka, Miki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-76a73c7dae142293ad2f2f27daef23ca653887ec486423fdbd016bc5f70cd9a93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Abstract Syntax</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Binding Signature</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Linear Binder</topic><topic>Pointed Object</topic><topic>Small Category</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Power, John</creatorcontrib><creatorcontrib>Tanaka, Miki</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Power, John</au><au>Tanaka, Miki</au><au>Urzyczyn, Paweł</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Binding Signatures for Generic Contexts</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>308</spage><epage>323</epage><pages>308-323</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540255931</isbn><isbn>9783540255932</isbn><eisbn>3540320148</eisbn><eisbn>9783540320142</eisbn><abstract>Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders for contexts, with leading examples given by the untyped ordinary and linear λ-calculi. Here, we give an axiomatic framework that includes their works on cartesian and linear binders, and moreover their assorted variants, notably including the combined cartesian and linear binders of the Logic of Bunched Implications. We provide a definition of binding signature in general, extending the previous ones and yielding a definition for the first time for the example of Bunched Implications, and we characterise the presheaf of terms generated from the binding signature. The characterisation requires a subtle analysis of a strength of a binding signature over a substitution monoidal structure on the presheaf category.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11417170_23</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.308-323
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17027568
source Springer Books
subjects Abstract Syntax
Algorithmics. Computability. Computer arithmetics
Applied sciences
Binding Signature
Computer science
control theory
systems
Exact sciences and technology
Linear Binder
Pointed Object
Small Category
Theoretical computing
title Binding Signatures for Generic Contexts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Binding%20Signatures%20for%20Generic%20Contexts&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Power,%20John&rft.date=2005&rft.spage=308&rft.epage=323&rft.pages=308-323&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540255931&rft.isbn_list=9783540255932&rft_id=info:doi/10.1007/11417170_23&rft_dat=%3Cpascalfrancis_sprin%3E17027568%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320148&rft.eisbn_list=9783540320142&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true