Binding Signatures for Generic Contexts
Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders f...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | |
container_start_page | 308 |
container_title | |
container_volume | |
creator | Power, John Tanaka, Miki |
description | Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders for contexts, with leading examples given by the untyped ordinary and linear λ-calculi. Here, we give an axiomatic framework that includes their works on cartesian and linear binders, and moreover their assorted variants, notably including the combined cartesian and linear binders of the Logic of Bunched Implications. We provide a definition of binding signature in general, extending the previous ones and yielding a definition for the first time for the example of Bunched Implications, and we characterise the presheaf of terms generated from the binding signature. The characterisation requires a subtle analysis of a strength of a binding signature over a substitution monoidal structure on the presheaf category. |
doi_str_mv | 10.1007/11417170_23 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17027568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17027568</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-76a73c7dae142293ad2f2f27daef23ca653887ec486423fdbd016bc5f70cd9a93</originalsourceid><addsrcrecordid>eNpNUEtLAzEYjC-wrZ78A3sR8bD6PbKbzVGLVqHgQT2HNJuU9ZEtyQr6791SDzKHgZlhYEaIM4QrBFDXiBIVKjDEe2LKlQQmQNnsiwnWiCWz1Ac7g6pKMx6KCTBQqZXkYzHN-Q0ASGmaiIvbLrZdXBfP3Tra4Sv5XIQ-FQsffepcMe_j4L-HfCKOgv3I_vSPZ-L1_u5l_lAunxaP85tluSHUQ6lqq9ip1nqURJptS2HEVgjEztYVN43yTja1JA7tqgWsV64KClyrreaZON_1bmx29iMkG12XzSZ1nzb9mHE1qapuxtzlLpdHK659Mqu-f88GwWw_Mv8-4l_AN1L6</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Binding Signatures for Generic Contexts</title><source>Springer Books</source><creator>Power, John ; Tanaka, Miki</creator><contributor>Urzyczyn, Paweł</contributor><creatorcontrib>Power, John ; Tanaka, Miki ; Urzyczyn, Paweł</creatorcontrib><description>Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders for contexts, with leading examples given by the untyped ordinary and linear λ-calculi. Here, we give an axiomatic framework that includes their works on cartesian and linear binders, and moreover their assorted variants, notably including the combined cartesian and linear binders of the Logic of Bunched Implications. We provide a definition of binding signature in general, extending the previous ones and yielding a definition for the first time for the example of Bunched Implications, and we characterise the presheaf of terms generated from the binding signature. The characterisation requires a subtle analysis of a strength of a binding signature over a substitution monoidal structure on the presheaf category.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540255931</identifier><identifier>ISBN: 9783540255932</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540320148</identifier><identifier>EISBN: 9783540320142</identifier><identifier>DOI: 10.1007/11417170_23</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Abstract Syntax ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Binding Signature ; Computer science; control theory; systems ; Exact sciences and technology ; Linear Binder ; Pointed Object ; Small Category ; Theoretical computing</subject><ispartof>Lecture notes in computer science, 2005, p.308-323</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11417170_23$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11417170_23$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,776,777,781,786,787,790,4036,4037,27906,38236,41423,42492</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17027568$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Urzyczyn, Paweł</contributor><creatorcontrib>Power, John</creatorcontrib><creatorcontrib>Tanaka, Miki</creatorcontrib><title>Binding Signatures for Generic Contexts</title><title>Lecture notes in computer science</title><description>Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders for contexts, with leading examples given by the untyped ordinary and linear λ-calculi. Here, we give an axiomatic framework that includes their works on cartesian and linear binders, and moreover their assorted variants, notably including the combined cartesian and linear binders of the Logic of Bunched Implications. We provide a definition of binding signature in general, extending the previous ones and yielding a definition for the first time for the example of Bunched Implications, and we characterise the presheaf of terms generated from the binding signature. The characterisation requires a subtle analysis of a strength of a binding signature over a substitution monoidal structure on the presheaf category.</description><subject>Abstract Syntax</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Binding Signature</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Linear Binder</subject><subject>Pointed Object</subject><subject>Small Category</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540255931</isbn><isbn>9783540255932</isbn><isbn>3540320148</isbn><isbn>9783540320142</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUEtLAzEYjC-wrZ78A3sR8bD6PbKbzVGLVqHgQT2HNJuU9ZEtyQr6791SDzKHgZlhYEaIM4QrBFDXiBIVKjDEe2LKlQQmQNnsiwnWiCWz1Ac7g6pKMx6KCTBQqZXkYzHN-Q0ASGmaiIvbLrZdXBfP3Tra4Sv5XIQ-FQsffepcMe_j4L-HfCKOgv3I_vSPZ-L1_u5l_lAunxaP85tluSHUQ6lqq9ip1nqURJptS2HEVgjEztYVN43yTja1JA7tqgWsV64KClyrreaZON_1bmx29iMkG12XzSZ1nzb9mHE1qapuxtzlLpdHK659Mqu-f88GwWw_Mv8-4l_AN1L6</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Power, John</creator><creator>Tanaka, Miki</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Binding Signatures for Generic Contexts</title><author>Power, John ; Tanaka, Miki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-76a73c7dae142293ad2f2f27daef23ca653887ec486423fdbd016bc5f70cd9a93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Abstract Syntax</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Binding Signature</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Linear Binder</topic><topic>Pointed Object</topic><topic>Small Category</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Power, John</creatorcontrib><creatorcontrib>Tanaka, Miki</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Power, John</au><au>Tanaka, Miki</au><au>Urzyczyn, Paweł</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Binding Signatures for Generic Contexts</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>308</spage><epage>323</epage><pages>308-323</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540255931</isbn><isbn>9783540255932</isbn><eisbn>3540320148</eisbn><eisbn>9783540320142</eisbn><abstract>Fiore, Plotkin and Turi provided a definition of binding signature and characterised the presheaf of terms generated from a binding signature by an initiality property. Tanaka did for linear binders what Fiore et al did for cartesian binders. They used presheaf categories to model variable binders for contexts, with leading examples given by the untyped ordinary and linear λ-calculi. Here, we give an axiomatic framework that includes their works on cartesian and linear binders, and moreover their assorted variants, notably including the combined cartesian and linear binders of the Logic of Bunched Implications. We provide a definition of binding signature in general, extending the previous ones and yielding a definition for the first time for the example of Bunched Implications, and we characterise the presheaf of terms generated from the binding signature. The characterisation requires a subtle analysis of a strength of a binding signature over a substitution monoidal structure on the presheaf category.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11417170_23</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2005, p.308-323 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17027568 |
source | Springer Books |
subjects | Abstract Syntax Algorithmics. Computability. Computer arithmetics Applied sciences Binding Signature Computer science control theory systems Exact sciences and technology Linear Binder Pointed Object Small Category Theoretical computing |
title | Binding Signatures for Generic Contexts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T18%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Binding%20Signatures%20for%20Generic%20Contexts&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Power,%20John&rft.date=2005&rft.spage=308&rft.epage=323&rft.pages=308-323&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540255931&rft.isbn_list=9783540255932&rft_id=info:doi/10.1007/11417170_23&rft_dat=%3Cpascalfrancis_sprin%3E17027568%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540320148&rft.eisbn_list=9783540320142&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |