Local Pattern Detection and Clustering: Are There Substantive Differences?

The starting point of this work is the definition of local pattern detection given in [10] as the unsupervised detection of local regions with anomalously high data density, which represent real underlying phenomena. We discuss some aspects of this definition and examine the differences between clus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Höppner, Frank
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue
container_start_page 53
container_title
container_volume
creator Höppner, Frank
description The starting point of this work is the definition of local pattern detection given in [10] as the unsupervised detection of local regions with anomalously high data density, which represent real underlying phenomena. We discuss some aspects of this definition and examine the differences between clustering and pattern detection (if any), before we investigate how to utilize clustering algorithms for pattern detection. A modification of an existing clustering algorithm is proposed to identify local patterns that are flagged as being significant according to a statistical test.
doi_str_mv 10.1007/11504245_4
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17027555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17027555</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-695dfd7157e894aaa1cadcb867a15f4c86a58f08064117cf446a7f2401e975663</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhM1Loiq98AtyAXEJ7NrrR46oPKVKcICztXVsFChJFIcD_55URbCXlXZnRp9GiFOESwSwV4gaSJL2tCcWlXVKEyh0FeG-mKFBLJWi6uDvJ40mZQ7FDBTIsrKkjsUi53eYZvIZJ2fifNUF3hTPPI5xaIubOMYwNl1bcFsXy81Xns5N-3YijhJvclz87rl4vbt9WT6Uq6f7x-X1quwlurE0la5TbVHbOGExMwauw9oZy6gTBWdYuwQODCHakIgM2yQJMFZWG6Pm4myX23OeuNLAbWiy74fmk4dvjxak1VpPuoudLvdbvDj4ddd9ZI_gt1X5_6rUD79pUyo</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Local Pattern Detection and Clustering: Are There Substantive Differences?</title><source>Springer Books</source><creator>Höppner, Frank</creator><contributor>Siebes, Arno ; Boulicaut, Jean-François ; Morik, Katharina</contributor><creatorcontrib>Höppner, Frank ; Siebes, Arno ; Boulicaut, Jean-François ; Morik, Katharina</creatorcontrib><description>The starting point of this work is the definition of local pattern detection given in [10] as the unsupervised detection of local regions with anomalously high data density, which represent real underlying phenomena. We discuss some aspects of this definition and examine the differences between clustering and pattern detection (if any), before we investigate how to utilize clustering algorithms for pattern detection. A modification of an existing clustering algorithm is proposed to identify local patterns that are flagged as being significant according to a statistical test.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540265436</identifier><identifier>ISBN: 3540265430</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318941</identifier><identifier>EISBN: 3540318941</identifier><identifier>DOI: 10.1007/11504245_4</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Association Rule Mining ; Background Model ; Computer science; control theory; systems ; Data Density ; Data Object ; Exact sciences and technology ; Information systems. Data bases ; Local Pattern ; Memory organisation. Data processing ; Software</subject><ispartof>Lecture notes in computer science, 2005, p.53-70</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11504245_4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11504245_4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17027555$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Siebes, Arno</contributor><contributor>Boulicaut, Jean-François</contributor><contributor>Morik, Katharina</contributor><creatorcontrib>Höppner, Frank</creatorcontrib><title>Local Pattern Detection and Clustering: Are There Substantive Differences?</title><title>Lecture notes in computer science</title><description>The starting point of this work is the definition of local pattern detection given in [10] as the unsupervised detection of local regions with anomalously high data density, which represent real underlying phenomena. We discuss some aspects of this definition and examine the differences between clustering and pattern detection (if any), before we investigate how to utilize clustering algorithms for pattern detection. A modification of an existing clustering algorithm is proposed to identify local patterns that are flagged as being significant according to a statistical test.</description><subject>Applied sciences</subject><subject>Association Rule Mining</subject><subject>Background Model</subject><subject>Computer science; control theory; systems</subject><subject>Data Density</subject><subject>Data Object</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Local Pattern</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540265436</isbn><isbn>3540265430</isbn><isbn>9783540318941</isbn><isbn>3540318941</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkEtPwzAQhM1Loiq98AtyAXEJ7NrrR46oPKVKcICztXVsFChJFIcD_55URbCXlXZnRp9GiFOESwSwV4gaSJL2tCcWlXVKEyh0FeG-mKFBLJWi6uDvJ40mZQ7FDBTIsrKkjsUi53eYZvIZJ2fifNUF3hTPPI5xaIubOMYwNl1bcFsXy81Xns5N-3YijhJvclz87rl4vbt9WT6Uq6f7x-X1quwlurE0la5TbVHbOGExMwauw9oZy6gTBWdYuwQODCHakIgM2yQJMFZWG6Pm4myX23OeuNLAbWiy74fmk4dvjxak1VpPuoudLvdbvDj4ddd9ZI_gt1X5_6rUD79pUyo</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Höppner, Frank</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Local Pattern Detection and Clustering</title><author>Höppner, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-695dfd7157e894aaa1cadcb867a15f4c86a58f08064117cf446a7f2401e975663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Association Rule Mining</topic><topic>Background Model</topic><topic>Computer science; control theory; systems</topic><topic>Data Density</topic><topic>Data Object</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Local Pattern</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Höppner, Frank</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Höppner, Frank</au><au>Siebes, Arno</au><au>Boulicaut, Jean-François</au><au>Morik, Katharina</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Local Pattern Detection and Clustering: Are There Substantive Differences?</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>53</spage><epage>70</epage><pages>53-70</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540265436</isbn><isbn>3540265430</isbn><eisbn>9783540318941</eisbn><eisbn>3540318941</eisbn><abstract>The starting point of this work is the definition of local pattern detection given in [10] as the unsupervised detection of local regions with anomalously high data density, which represent real underlying phenomena. We discuss some aspects of this definition and examine the differences between clustering and pattern detection (if any), before we investigate how to utilize clustering algorithms for pattern detection. A modification of an existing clustering algorithm is proposed to identify local patterns that are flagged as being significant according to a statistical test.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11504245_4</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.53-70
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17027555
source Springer Books
subjects Applied sciences
Association Rule Mining
Background Model
Computer science
control theory
systems
Data Density
Data Object
Exact sciences and technology
Information systems. Data bases
Local Pattern
Memory organisation. Data processing
Software
title Local Pattern Detection and Clustering: Are There Substantive Differences?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Local%20Pattern%20Detection%20and%20Clustering:%20Are%20There%20Substantive%20Differences?&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=H%C3%B6ppner,%20Frank&rft.date=2005&rft.spage=53&rft.epage=70&rft.pages=53-70&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540265436&rft.isbn_list=3540265430&rft_id=info:doi/10.1007/11504245_4&rft_dat=%3Cpascalfrancis_sprin%3E17027555%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318941&rft.eisbn_list=3540318941&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true