Conic Sections and Meet Intersections in Geometric Algebra

This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hitzer, Eckhard M. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue
container_start_page 350
container_title
container_volume
creator Hitzer, Eckhard M. S.
description This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections are listed in parametrizations specific for the use in the main part of the paper. In the third main part the meets of lines and circles, and of spheres and planes are calculated for all cases of real and virtual intersections. In the discussion special attention is on the hyperbolic carriers of the virtual intersections.
doi_str_mv 10.1007/11499251_25
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17027377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17027377</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-506238ab8bc48f2ab2069a92da6959b09553dce01959fc1a9b5d526d949a3efe3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhM2fRCk98QK5cOAQ8K5jJ8utqqBUKuIAnC3bcapA60R2Lrw9QQGJvYy082mkGcaugN8C5-UdQEGEEjTKI3YhZMEFApA8ZjNQALkQBZ1MBiokhadsxgXHnMpCnLNFSh98PAGqkjhj96sutC579W5ou5AyE-rs2fsh24TBx_T3bkO29t3BD3GEl_udt9FcsrPG7JNf_OqcvT8-vK2e8u3LerNabvMegYZccoWiMrayrqgaNBa5IkNYG0WSLCcpRe08HztQ48CQlbVEVVNBRvjGizm7nnJ7k5zZN9EE1ybdx_Zg4peGkmMpynLkbiYujVbY-aht130mDVz_LKf_LSe-AalLWeA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Conic Sections and Meet Intersections in Geometric Algebra</title><source>Springer Books</source><creator>Hitzer, Eckhard M. S.</creator><contributor>Sommer, Gerald ; Olver, Peter J. ; Li, Hongbo</contributor><creatorcontrib>Hitzer, Eckhard M. S. ; Sommer, Gerald ; Olver, Peter J. ; Li, Hongbo</creatorcontrib><description>This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections are listed in parametrizations specific for the use in the main part of the paper. In the third main part the meets of lines and circles, and of spheres and planes are calculated for all cases of real and virtual intersections. In the discussion special attention is on the hyperbolic carriers of the virtual intersections.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540262962</identifier><identifier>ISBN: 9783540262961</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540321195</identifier><identifier>EISBN: 9783540321194</identifier><identifier>DOI: 10.1007/11499251_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Computer Algebra and Geometric Algebra with Applications, 2005, p.350-362</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11499251_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11499251_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17027377$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sommer, Gerald</contributor><contributor>Olver, Peter J.</contributor><contributor>Li, Hongbo</contributor><creatorcontrib>Hitzer, Eckhard M. S.</creatorcontrib><title>Conic Sections and Meet Intersections in Geometric Algebra</title><title>Computer Algebra and Geometric Algebra with Applications</title><description>This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections are listed in parametrizations specific for the use in the main part of the paper. In the third main part the meets of lines and circles, and of spheres and planes are calculated for all cases of real and virtual intersections. In the discussion special attention is on the hyperbolic carriers of the virtual intersections.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540262962</isbn><isbn>9783540262961</isbn><isbn>3540321195</isbn><isbn>9783540321194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkM1OwzAQhM2fRCk98QK5cOAQ8K5jJ8utqqBUKuIAnC3bcapA60R2Lrw9QQGJvYy082mkGcaugN8C5-UdQEGEEjTKI3YhZMEFApA8ZjNQALkQBZ1MBiokhadsxgXHnMpCnLNFSh98PAGqkjhj96sutC579W5ou5AyE-rs2fsh24TBx_T3bkO29t3BD3GEl_udt9FcsrPG7JNf_OqcvT8-vK2e8u3LerNabvMegYZccoWiMrayrqgaNBa5IkNYG0WSLCcpRe08HztQ48CQlbVEVVNBRvjGizm7nnJ7k5zZN9EE1ybdx_Zg4peGkmMpynLkbiYujVbY-aht130mDVz_LKf_LSe-AalLWeA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Hitzer, Eckhard M. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Conic Sections and Meet Intersections in Geometric Algebra</title><author>Hitzer, Eckhard M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-506238ab8bc48f2ab2069a92da6959b09553dce01959fc1a9b5d526d949a3efe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hitzer, Eckhard M. S.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hitzer, Eckhard M. S.</au><au>Sommer, Gerald</au><au>Olver, Peter J.</au><au>Li, Hongbo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Conic Sections and Meet Intersections in Geometric Algebra</atitle><btitle>Computer Algebra and Geometric Algebra with Applications</btitle><date>2005</date><risdate>2005</risdate><spage>350</spage><epage>362</epage><pages>350-362</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540262962</isbn><isbn>9783540262961</isbn><eisbn>3540321195</eisbn><eisbn>9783540321194</eisbn><abstract>This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections are listed in parametrizations specific for the use in the main part of the paper. In the third main part the meets of lines and circles, and of spheres and planes are calculated for all cases of real and virtual intersections. In the discussion special attention is on the hyperbolic carriers of the virtual intersections.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11499251_25</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computer Algebra and Geometric Algebra with Applications, 2005, p.350-362
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17027377
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Theoretical computing
title Conic Sections and Meet Intersections in Geometric Algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Conic%20Sections%20and%20Meet%20Intersections%20in%20Geometric%20Algebra&rft.btitle=Computer%20Algebra%20and%20Geometric%20Algebra%20with%20Applications&rft.au=Hitzer,%20Eckhard%20M.%20S.&rft.date=2005&rft.spage=350&rft.epage=362&rft.pages=350-362&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540262962&rft.isbn_list=9783540262961&rft_id=info:doi/10.1007/11499251_25&rft_dat=%3Cpascalfrancis_sprin%3E17027377%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540321195&rft.eisbn_list=9783540321194&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true