Conic Sections and Meet Intersections in Geometric Algebra
This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 362 |
---|---|
container_issue | |
container_start_page | 350 |
container_title | |
container_volume | |
creator | Hitzer, Eckhard M. S. |
description | This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections are listed in parametrizations specific for the use in the main part of the paper. In the third main part the meets of lines and circles, and of spheres and planes are calculated for all cases of real and virtual intersections. In the discussion special attention is on the hyperbolic carriers of the virtual intersections. |
doi_str_mv | 10.1007/11499251_25 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17027377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17027377</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-506238ab8bc48f2ab2069a92da6959b09553dce01959fc1a9b5d526d949a3efe3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhM2fRCk98QK5cOAQ8K5jJ8utqqBUKuIAnC3bcapA60R2Lrw9QQGJvYy082mkGcaugN8C5-UdQEGEEjTKI3YhZMEFApA8ZjNQALkQBZ1MBiokhadsxgXHnMpCnLNFSh98PAGqkjhj96sutC579W5ou5AyE-rs2fsh24TBx_T3bkO29t3BD3GEl_udt9FcsrPG7JNf_OqcvT8-vK2e8u3LerNabvMegYZccoWiMrayrqgaNBa5IkNYG0WSLCcpRe08HztQ48CQlbVEVVNBRvjGizm7nnJ7k5zZN9EE1ybdx_Zg4peGkmMpynLkbiYujVbY-aht130mDVz_LKf_LSe-AalLWeA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Conic Sections and Meet Intersections in Geometric Algebra</title><source>Springer Books</source><creator>Hitzer, Eckhard M. S.</creator><contributor>Sommer, Gerald ; Olver, Peter J. ; Li, Hongbo</contributor><creatorcontrib>Hitzer, Eckhard M. S. ; Sommer, Gerald ; Olver, Peter J. ; Li, Hongbo</creatorcontrib><description>This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections are listed in parametrizations specific for the use in the main part of the paper. In the third main part the meets of lines and circles, and of spheres and planes are calculated for all cases of real and virtual intersections. In the discussion special attention is on the hyperbolic carriers of the virtual intersections.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540262962</identifier><identifier>ISBN: 9783540262961</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540321195</identifier><identifier>EISBN: 9783540321194</identifier><identifier>DOI: 10.1007/11499251_25</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Theoretical computing</subject><ispartof>Computer Algebra and Geometric Algebra with Applications, 2005, p.350-362</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11499251_25$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11499251_25$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17027377$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Sommer, Gerald</contributor><contributor>Olver, Peter J.</contributor><contributor>Li, Hongbo</contributor><creatorcontrib>Hitzer, Eckhard M. S.</creatorcontrib><title>Conic Sections and Meet Intersections in Geometric Algebra</title><title>Computer Algebra and Geometric Algebra with Applications</title><description>This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections are listed in parametrizations specific for the use in the main part of the paper. In the third main part the meets of lines and circles, and of spheres and planes are calculated for all cases of real and virtual intersections. In the discussion special attention is on the hyperbolic carriers of the virtual intersections.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540262962</isbn><isbn>9783540262961</isbn><isbn>3540321195</isbn><isbn>9783540321194</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkM1OwzAQhM2fRCk98QK5cOAQ8K5jJ8utqqBUKuIAnC3bcapA60R2Lrw9QQGJvYy082mkGcaugN8C5-UdQEGEEjTKI3YhZMEFApA8ZjNQALkQBZ1MBiokhadsxgXHnMpCnLNFSh98PAGqkjhj96sutC579W5ou5AyE-rs2fsh24TBx_T3bkO29t3BD3GEl_udt9FcsrPG7JNf_OqcvT8-vK2e8u3LerNabvMegYZccoWiMrayrqgaNBa5IkNYG0WSLCcpRe08HztQ48CQlbVEVVNBRvjGizm7nnJ7k5zZN9EE1ybdx_Zg4peGkmMpynLkbiYujVbY-aht130mDVz_LKf_LSe-AalLWeA</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Hitzer, Eckhard M. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Conic Sections and Meet Intersections in Geometric Algebra</title><author>Hitzer, Eckhard M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-506238ab8bc48f2ab2069a92da6959b09553dce01959fc1a9b5d526d949a3efe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hitzer, Eckhard M. S.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hitzer, Eckhard M. S.</au><au>Sommer, Gerald</au><au>Olver, Peter J.</au><au>Li, Hongbo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Conic Sections and Meet Intersections in Geometric Algebra</atitle><btitle>Computer Algebra and Geometric Algebra with Applications</btitle><date>2005</date><risdate>2005</risdate><spage>350</spage><epage>362</epage><pages>350-362</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540262962</isbn><isbn>9783540262961</isbn><eisbn>3540321195</eisbn><eisbn>9783540321194</eisbn><abstract>This paper first gives a brief overview over some interesting descriptions of conic sections, showing formulations in the three geometric algebras of Euclidean spaces, projective spaces, and the conformal model of Euclidean space. Second the conformal model descriptions of a subset of conic sections are listed in parametrizations specific for the use in the main part of the paper. In the third main part the meets of lines and circles, and of spheres and planes are calculated for all cases of real and virtual intersections. In the discussion special attention is on the hyperbolic carriers of the virtual intersections.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11499251_25</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computer Algebra and Geometric Algebra with Applications, 2005, p.350-362 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17027377 |
source | Springer Books |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Computer science control theory systems Exact sciences and technology Theoretical computing |
title | Conic Sections and Meet Intersections in Geometric Algebra |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T00%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Conic%20Sections%20and%20Meet%20Intersections%20in%20Geometric%20Algebra&rft.btitle=Computer%20Algebra%20and%20Geometric%20Algebra%20with%20Applications&rft.au=Hitzer,%20Eckhard%20M.%20S.&rft.date=2005&rft.spage=350&rft.epage=362&rft.pages=350-362&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540262962&rft.isbn_list=9783540262961&rft_id=info:doi/10.1007/11499251_25&rft_dat=%3Cpascalfrancis_sprin%3E17027377%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540321195&rft.eisbn_list=9783540321194&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |