Reflecting Proofs in First-Order Logic with Equality

Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Contejean, Evelyne, Corbineau, Pierre
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 7
container_title
container_volume 3632
creator Contejean, Evelyne
Corbineau, Pierre
description Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with respect to a reflective interpretation of formulae as Coq properties — inside Coq’s type theory. Our generic framework allows to interpret proofs traces computed by any automated theorem prover, as long as they are precise enough: we illustrate that on traces produced by the CiME tool when solving unifiability problems by ordered completion. We discuss some benchmark results obtained on the TPTP library.
doi_str_mv 10.1007/11532231_2
format Conference Proceeding
fullrecord <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17027174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00946061v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h252t-d45dae30b522494c898162e0db37bab9fee8cebb09cd760961bd3b76f3d10d063</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1Loird8AXZIMEiMGM7drysUEuRIhUhWFt24rSGkBQ7gPr3pCoqs7nS3DOzOIRcItwigLxDzBilDDU9IhMlc5ZxYJgLzo_JCAViyhhXJ4eO5gCZPCUjYEBTJTk7J5MY32AYhoKpbET4s6sbV_a-XSVPoevqmPg2mfsQ-3QZKheSolv5Mvnx_TqZfX6ZxvfbC3JWmya6yV-Oyet89nK_SIvlw-P9tEjXNKN9WvGsMo6BzSjlipe5ylFQB5Vl0hqraufy0lkLqqykACXQVsxKUbMKoQLBxuRm_3dtGr0J_sOEre6M14tpoXc7AMUFCPzGgb3asxsTS9PUwbSlj4crlEAlDgrG5HrPxaFqVy5o23XvUSPonWT9L5n9AhdsZoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reflecting Proofs in First-Order Logic with Equality</title><source>Springer Books</source><creator>Contejean, Evelyne ; Corbineau, Pierre</creator><contributor>Nieuwenhuis, Robert</contributor><creatorcontrib>Contejean, Evelyne ; Corbineau, Pierre ; Nieuwenhuis, Robert</creatorcontrib><description>Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with respect to a reflective interpretation of formulae as Coq properties — inside Coq’s type theory. Our generic framework allows to interpret proofs traces computed by any automated theorem prover, as long as they are precise enough: we illustrate that on traces produced by the CiME tool when solving unifiability problems by ordered completion. We discuss some benchmark results obtained on the TPTP library.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540280057</identifier><identifier>ISBN: 3540280057</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318644</identifier><identifier>EISBN: 354031864X</identifier><identifier>DOI: 10.1007/11532231_2</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Critical Pair ; Exact sciences and technology ; Interpretation Function ; Learning and adaptive systems ; Logic in Computer Science ; Proof Assistant ; Sequent Calculus ; Word Problem</subject><ispartof>Automated Deduction – CADE-20, 2005, Vol.3632, p.7-22</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8195-7861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11532231_2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11532231_2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,885,4049,4050,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17027174$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00946061$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Nieuwenhuis, Robert</contributor><creatorcontrib>Contejean, Evelyne</creatorcontrib><creatorcontrib>Corbineau, Pierre</creatorcontrib><title>Reflecting Proofs in First-Order Logic with Equality</title><title>Automated Deduction – CADE-20</title><description>Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with respect to a reflective interpretation of formulae as Coq properties — inside Coq’s type theory. Our generic framework allows to interpret proofs traces computed by any automated theorem prover, as long as they are precise enough: we illustrate that on traces produced by the CiME tool when solving unifiability problems by ordered completion. We discuss some benchmark results obtained on the TPTP library.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Critical Pair</subject><subject>Exact sciences and technology</subject><subject>Interpretation Function</subject><subject>Learning and adaptive systems</subject><subject>Logic in Computer Science</subject><subject>Proof Assistant</subject><subject>Sequent Calculus</subject><subject>Word Problem</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540280057</isbn><isbn>3540280057</isbn><isbn>9783540318644</isbn><isbn>354031864X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkMtOwzAQRc1Loird8AXZIMEiMGM7drysUEuRIhUhWFt24rSGkBQ7gPr3pCoqs7nS3DOzOIRcItwigLxDzBilDDU9IhMlc5ZxYJgLzo_JCAViyhhXJ4eO5gCZPCUjYEBTJTk7J5MY32AYhoKpbET4s6sbV_a-XSVPoevqmPg2mfsQ-3QZKheSolv5Mvnx_TqZfX6ZxvfbC3JWmya6yV-Oyet89nK_SIvlw-P9tEjXNKN9WvGsMo6BzSjlipe5ylFQB5Vl0hqraufy0lkLqqykACXQVsxKUbMKoQLBxuRm_3dtGr0J_sOEre6M14tpoXc7AMUFCPzGgb3asxsTS9PUwbSlj4crlEAlDgrG5HrPxaFqVy5o23XvUSPonWT9L5n9AhdsZoc</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Contejean, Evelyne</creator><creator>Corbineau, Pierre</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8195-7861</orcidid></search><sort><creationdate>2005</creationdate><title>Reflecting Proofs in First-Order Logic with Equality</title><author>Contejean, Evelyne ; Corbineau, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h252t-d45dae30b522494c898162e0db37bab9fee8cebb09cd760961bd3b76f3d10d063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Critical Pair</topic><topic>Exact sciences and technology</topic><topic>Interpretation Function</topic><topic>Learning and adaptive systems</topic><topic>Logic in Computer Science</topic><topic>Proof Assistant</topic><topic>Sequent Calculus</topic><topic>Word Problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contejean, Evelyne</creatorcontrib><creatorcontrib>Corbineau, Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contejean, Evelyne</au><au>Corbineau, Pierre</au><au>Nieuwenhuis, Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reflecting Proofs in First-Order Logic with Equality</atitle><btitle>Automated Deduction – CADE-20</btitle><date>2005</date><risdate>2005</risdate><volume>3632</volume><spage>7</spage><epage>22</epage><pages>7-22</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540280057</isbn><isbn>3540280057</isbn><eisbn>9783540318644</eisbn><eisbn>354031864X</eisbn><abstract>Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with respect to a reflective interpretation of formulae as Coq properties — inside Coq’s type theory. Our generic framework allows to interpret proofs traces computed by any automated theorem prover, as long as they are precise enough: we illustrate that on traces produced by the CiME tool when solving unifiability problems by ordered completion. We discuss some benchmark results obtained on the TPTP library.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11532231_2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8195-7861</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Automated Deduction – CADE-20, 2005, Vol.3632, p.7-22
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17027174
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer Science
Computer science
control theory
systems
Critical Pair
Exact sciences and technology
Interpretation Function
Learning and adaptive systems
Logic in Computer Science
Proof Assistant
Sequent Calculus
Word Problem
title Reflecting Proofs in First-Order Logic with Equality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reflecting%20Proofs%20in%20First-Order%20Logic%20with%20Equality&rft.btitle=Automated%20Deduction%20%E2%80%93%20CADE-20&rft.au=Contejean,%20Evelyne&rft.date=2005&rft.volume=3632&rft.spage=7&rft.epage=22&rft.pages=7-22&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540280057&rft.isbn_list=3540280057&rft_id=info:doi/10.1007/11532231_2&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_00946061v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318644&rft.eisbn_list=354031864X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true