Reflecting Proofs in First-Order Logic with Equality
Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with resp...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 7 |
container_title | |
container_volume | 3632 |
creator | Contejean, Evelyne Corbineau, Pierre |
description | Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with respect to a reflective interpretation of formulae as Coq properties — inside Coq’s type theory. Our generic framework allows to interpret proofs traces computed by any automated theorem prover, as long as they are precise enough: we illustrate that on traces produced by the CiME tool when solving unifiability problems by ordered completion. We discuss some benchmark results obtained on the TPTP library. |
doi_str_mv | 10.1007/11532231_2 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_pascalfrancis_primary_17027174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00946061v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h252t-d45dae30b522494c898162e0db37bab9fee8cebb09cd760961bd3b76f3d10d063</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRc1Loird8AXZIMEiMGM7drysUEuRIhUhWFt24rSGkBQ7gPr3pCoqs7nS3DOzOIRcItwigLxDzBilDDU9IhMlc5ZxYJgLzo_JCAViyhhXJ4eO5gCZPCUjYEBTJTk7J5MY32AYhoKpbET4s6sbV_a-XSVPoevqmPg2mfsQ-3QZKheSolv5Mvnx_TqZfX6ZxvfbC3JWmya6yV-Oyet89nK_SIvlw-P9tEjXNKN9WvGsMo6BzSjlipe5ylFQB5Vl0hqraufy0lkLqqykACXQVsxKUbMKoQLBxuRm_3dtGr0J_sOEre6M14tpoXc7AMUFCPzGgb3asxsTS9PUwbSlj4crlEAlDgrG5HrPxaFqVy5o23XvUSPonWT9L5n9AhdsZoc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reflecting Proofs in First-Order Logic with Equality</title><source>Springer Books</source><creator>Contejean, Evelyne ; Corbineau, Pierre</creator><contributor>Nieuwenhuis, Robert</contributor><creatorcontrib>Contejean, Evelyne ; Corbineau, Pierre ; Nieuwenhuis, Robert</creatorcontrib><description>Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with respect to a reflective interpretation of formulae as Coq properties — inside Coq’s type theory. Our generic framework allows to interpret proofs traces computed by any automated theorem prover, as long as they are precise enough: we illustrate that on traces produced by the CiME tool when solving unifiability problems by ordered completion. We discuss some benchmark results obtained on the TPTP library.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540280057</identifier><identifier>ISBN: 3540280057</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318644</identifier><identifier>EISBN: 354031864X</identifier><identifier>DOI: 10.1007/11532231_2</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer Science ; Computer science; control theory; systems ; Critical Pair ; Exact sciences and technology ; Interpretation Function ; Learning and adaptive systems ; Logic in Computer Science ; Proof Assistant ; Sequent Calculus ; Word Problem</subject><ispartof>Automated Deduction – CADE-20, 2005, Vol.3632, p.7-22</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8195-7861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11532231_2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11532231_2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,885,4049,4050,27924,38254,41441,42510</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17027174$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-00946061$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Nieuwenhuis, Robert</contributor><creatorcontrib>Contejean, Evelyne</creatorcontrib><creatorcontrib>Corbineau, Pierre</creatorcontrib><title>Reflecting Proofs in First-Order Logic with Equality</title><title>Automated Deduction – CADE-20</title><description>Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with respect to a reflective interpretation of formulae as Coq properties — inside Coq’s type theory. Our generic framework allows to interpret proofs traces computed by any automated theorem prover, as long as they are precise enough: we illustrate that on traces produced by the CiME tool when solving unifiability problems by ordered completion. We discuss some benchmark results obtained on the TPTP library.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Critical Pair</subject><subject>Exact sciences and technology</subject><subject>Interpretation Function</subject><subject>Learning and adaptive systems</subject><subject>Logic in Computer Science</subject><subject>Proof Assistant</subject><subject>Sequent Calculus</subject><subject>Word Problem</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540280057</isbn><isbn>3540280057</isbn><isbn>9783540318644</isbn><isbn>354031864X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkMtOwzAQRc1Loird8AXZIMEiMGM7drysUEuRIhUhWFt24rSGkBQ7gPr3pCoqs7nS3DOzOIRcItwigLxDzBilDDU9IhMlc5ZxYJgLzo_JCAViyhhXJ4eO5gCZPCUjYEBTJTk7J5MY32AYhoKpbET4s6sbV_a-XSVPoevqmPg2mfsQ-3QZKheSolv5Mvnx_TqZfX6ZxvfbC3JWmya6yV-Oyet89nK_SIvlw-P9tEjXNKN9WvGsMo6BzSjlipe5ylFQB5Vl0hqraufy0lkLqqykACXQVsxKUbMKoQLBxuRm_3dtGr0J_sOEre6M14tpoXc7AMUFCPzGgb3asxsTS9PUwbSlj4crlEAlDgrG5HrPxaFqVy5o23XvUSPonWT9L5n9AhdsZoc</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Contejean, Evelyne</creator><creator>Corbineau, Pierre</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8195-7861</orcidid></search><sort><creationdate>2005</creationdate><title>Reflecting Proofs in First-Order Logic with Equality</title><author>Contejean, Evelyne ; Corbineau, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h252t-d45dae30b522494c898162e0db37bab9fee8cebb09cd760961bd3b76f3d10d063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Critical Pair</topic><topic>Exact sciences and technology</topic><topic>Interpretation Function</topic><topic>Learning and adaptive systems</topic><topic>Logic in Computer Science</topic><topic>Proof Assistant</topic><topic>Sequent Calculus</topic><topic>Word Problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contejean, Evelyne</creatorcontrib><creatorcontrib>Corbineau, Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contejean, Evelyne</au><au>Corbineau, Pierre</au><au>Nieuwenhuis, Robert</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reflecting Proofs in First-Order Logic with Equality</atitle><btitle>Automated Deduction – CADE-20</btitle><date>2005</date><risdate>2005</risdate><volume>3632</volume><spage>7</spage><epage>22</epage><pages>7-22</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540280057</isbn><isbn>3540280057</isbn><eisbn>9783540318644</eisbn><eisbn>354031864X</eisbn><abstract>Our general goal is to provide better automation in interactive proof assistants such as Coq. We present an interpreter of proof traces in first-order multi-sorted logic with equality. Thanks to the reflection ability of Coq, this interpreter is both implemented and formally proved sound — with respect to a reflective interpretation of formulae as Coq properties — inside Coq’s type theory. Our generic framework allows to interpret proofs traces computed by any automated theorem prover, as long as they are precise enough: we illustrate that on traces produced by the CiME tool when solving unifiability problems by ordered completion. We discuss some benchmark results obtained on the TPTP library.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11532231_2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8195-7861</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Automated Deduction – CADE-20, 2005, Vol.3632, p.7-22 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17027174 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer Science Computer science control theory systems Critical Pair Exact sciences and technology Interpretation Function Learning and adaptive systems Logic in Computer Science Proof Assistant Sequent Calculus Word Problem |
title | Reflecting Proofs in First-Order Logic with Equality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A32%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reflecting%20Proofs%20in%20First-Order%20Logic%20with%20Equality&rft.btitle=Automated%20Deduction%20%E2%80%93%20CADE-20&rft.au=Contejean,%20Evelyne&rft.date=2005&rft.volume=3632&rft.spage=7&rft.epage=22&rft.pages=7-22&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540280057&rft.isbn_list=3540280057&rft_id=info:doi/10.1007/11532231_2&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_00946061v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318644&rft.eisbn_list=354031864X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |