Undirected Training of Run Transferable Libraries

This paper investigates the robustness of Run Transferable Libraries(RTLs) on scaled problems. RTLs provide GP with a library of functions which replace the usual primitive functions provided when approaching a problem. The RTL evolves from run to run using feedback based on function usage, and has...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Keijzer, Maarten, Ryan, Conor, Murphy, Gearoid, Cattolico, Mike
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue
container_start_page 361
container_title
container_volume
creator Keijzer, Maarten
Ryan, Conor
Murphy, Gearoid
Cattolico, Mike
description This paper investigates the robustness of Run Transferable Libraries(RTLs) on scaled problems. RTLs provide GP with a library of functions which replace the usual primitive functions provided when approaching a problem. The RTL evolves from run to run using feedback based on function usage, and has been shown to outperform GP by an order of magnitude on a variety of scalable problems. RTLs can, however, also be applied across a domain of related problems, as well as across a range of scaled instances of a single problem. To do this successfully, it will need to balance a range of functions. We introduce a problem that can deceive the system into converging to a sub-optimal set of functions, and demonstrate that this is a consequence of the greediness of the library update algorithm. We demonstrate that a much simpler, truly evolutionary, update strategy doesn’t suffer from this problem, and exhibits far better optimization properties than the original strategy.
doi_str_mv 10.1007/978-3-540-31989-4_33
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17026811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17026811</sourcerecordid><originalsourceid>FETCH-LOGICAL-p228t-835a0345d193c2975d0a94db8d0d23a6f1cadae05310839e67d6e4c866bdd5663</originalsourceid><addsrcrecordid>eNotkEtLQzEQheMLrLX_wMXduIzOZPJciviCgiDtOuTe5JZovS1JXfjvvW2dzTDnHIbDx9gNwh0CmHtnLCeuJHBCZx2XnuiEXdGoHAQ8ZRPUiJxIurOjIZQkrc_ZBAgEd0bSJZvV-gnjEBqHdsJwOcRcUrdLsVmUkIc8rJpN33z8DPt7qH0qoV2nZp7bEkpO9Zpd9GFd0-x_T9ny-Wnx-Mrn7y9vjw9zvhXC7rglFYCkiuioE86oCMHJ2NoIUVDQPXYhhgSKECy5pE3USXZW6zZGpTVN2e3x7zbULqz7sUyXq9-W_B3Kr0cDQlvEMSeOuTpawyoV3242X9Uj-D05P5Lz5Ecc_gDK78nRH7fgWww</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Undirected Training of Run Transferable Libraries</title><source>Springer Books</source><creator>Keijzer, Maarten ; Ryan, Conor ; Murphy, Gearoid ; Cattolico, Mike</creator><contributor>Collet, Pierre ; Tettamanzi, Andrea ; van Hemert, Jano ; Keijzer, Maarten ; Tomassini, Marco</contributor><creatorcontrib>Keijzer, Maarten ; Ryan, Conor ; Murphy, Gearoid ; Cattolico, Mike ; Collet, Pierre ; Tettamanzi, Andrea ; van Hemert, Jano ; Keijzer, Maarten ; Tomassini, Marco</creatorcontrib><description>This paper investigates the robustness of Run Transferable Libraries(RTLs) on scaled problems. RTLs provide GP with a library of functions which replace the usual primitive functions provided when approaching a problem. The RTL evolves from run to run using feedback based on function usage, and has been shown to outperform GP by an order of magnitude on a variety of scalable problems. RTLs can, however, also be applied across a domain of related problems, as well as across a range of scaled instances of a single problem. To do this successfully, it will need to balance a range of functions. We introduce a problem that can deceive the system into converging to a sub-optimal set of functions, and demonstrate that this is a consequence of the greediness of the library update algorithm. We demonstrate that a much simpler, truly evolutionary, update strategy doesn’t suffer from this problem, and exhibits far better optimization properties than the original strategy.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540254366</identifier><identifier>ISBN: 9783540254362</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3540319891</identifier><identifier>EISBN: 9783540319894</identifier><identifier>DOI: 10.1007/978-3-540-31989-4_33</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Genetic Program ; Genetic Program System ; Library Content ; Multiplexer Problem ; Problem Instance ; Theoretical computing</subject><ispartof>Genetic Programming, 2005, p.361-370</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-31989-4_33$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-31989-4_33$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,779,780,784,789,790,793,4050,4051,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17026811$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Collet, Pierre</contributor><contributor>Tettamanzi, Andrea</contributor><contributor>van Hemert, Jano</contributor><contributor>Keijzer, Maarten</contributor><contributor>Tomassini, Marco</contributor><creatorcontrib>Keijzer, Maarten</creatorcontrib><creatorcontrib>Ryan, Conor</creatorcontrib><creatorcontrib>Murphy, Gearoid</creatorcontrib><creatorcontrib>Cattolico, Mike</creatorcontrib><title>Undirected Training of Run Transferable Libraries</title><title>Genetic Programming</title><description>This paper investigates the robustness of Run Transferable Libraries(RTLs) on scaled problems. RTLs provide GP with a library of functions which replace the usual primitive functions provided when approaching a problem. The RTL evolves from run to run using feedback based on function usage, and has been shown to outperform GP by an order of magnitude on a variety of scalable problems. RTLs can, however, also be applied across a domain of related problems, as well as across a range of scaled instances of a single problem. To do this successfully, it will need to balance a range of functions. We introduce a problem that can deceive the system into converging to a sub-optimal set of functions, and demonstrate that this is a consequence of the greediness of the library update algorithm. We demonstrate that a much simpler, truly evolutionary, update strategy doesn’t suffer from this problem, and exhibits far better optimization properties than the original strategy.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Genetic Program</subject><subject>Genetic Program System</subject><subject>Library Content</subject><subject>Multiplexer Problem</subject><subject>Problem Instance</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540254366</isbn><isbn>9783540254362</isbn><isbn>3540319891</isbn><isbn>9783540319894</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLQzEQheMLrLX_wMXduIzOZPJciviCgiDtOuTe5JZovS1JXfjvvW2dzTDnHIbDx9gNwh0CmHtnLCeuJHBCZx2XnuiEXdGoHAQ8ZRPUiJxIurOjIZQkrc_ZBAgEd0bSJZvV-gnjEBqHdsJwOcRcUrdLsVmUkIc8rJpN33z8DPt7qH0qoV2nZp7bEkpO9Zpd9GFd0-x_T9ny-Wnx-Mrn7y9vjw9zvhXC7rglFYCkiuioE86oCMHJ2NoIUVDQPXYhhgSKECy5pE3USXZW6zZGpTVN2e3x7zbULqz7sUyXq9-W_B3Kr0cDQlvEMSeOuTpawyoV3242X9Uj-D05P5Lz5Ecc_gDK78nRH7fgWww</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Keijzer, Maarten</creator><creator>Ryan, Conor</creator><creator>Murphy, Gearoid</creator><creator>Cattolico, Mike</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Undirected Training of Run Transferable Libraries</title><author>Keijzer, Maarten ; Ryan, Conor ; Murphy, Gearoid ; Cattolico, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p228t-835a0345d193c2975d0a94db8d0d23a6f1cadae05310839e67d6e4c866bdd5663</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Genetic Program</topic><topic>Genetic Program System</topic><topic>Library Content</topic><topic>Multiplexer Problem</topic><topic>Problem Instance</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keijzer, Maarten</creatorcontrib><creatorcontrib>Ryan, Conor</creatorcontrib><creatorcontrib>Murphy, Gearoid</creatorcontrib><creatorcontrib>Cattolico, Mike</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keijzer, Maarten</au><au>Ryan, Conor</au><au>Murphy, Gearoid</au><au>Cattolico, Mike</au><au>Collet, Pierre</au><au>Tettamanzi, Andrea</au><au>van Hemert, Jano</au><au>Keijzer, Maarten</au><au>Tomassini, Marco</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Undirected Training of Run Transferable Libraries</atitle><btitle>Genetic Programming</btitle><date>2005</date><risdate>2005</risdate><spage>361</spage><epage>370</epage><pages>361-370</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540254366</isbn><isbn>9783540254362</isbn><eisbn>3540319891</eisbn><eisbn>9783540319894</eisbn><abstract>This paper investigates the robustness of Run Transferable Libraries(RTLs) on scaled problems. RTLs provide GP with a library of functions which replace the usual primitive functions provided when approaching a problem. The RTL evolves from run to run using feedback based on function usage, and has been shown to outperform GP by an order of magnitude on a variety of scalable problems. RTLs can, however, also be applied across a domain of related problems, as well as across a range of scaled instances of a single problem. To do this successfully, it will need to balance a range of functions. We introduce a problem that can deceive the system into converging to a sub-optimal set of functions, and demonstrate that this is a consequence of the greediness of the library update algorithm. We demonstrate that a much simpler, truly evolutionary, update strategy doesn’t suffer from this problem, and exhibits far better optimization properties than the original strategy.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-31989-4_33</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Genetic Programming, 2005, p.361-370
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17026811
source Springer Books
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Genetic Program
Genetic Program System
Library Content
Multiplexer Problem
Problem Instance
Theoretical computing
title Undirected Training of Run Transferable Libraries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Undirected%20Training%20of%20Run%20Transferable%20Libraries&rft.btitle=Genetic%20Programming&rft.au=Keijzer,%20Maarten&rft.date=2005&rft.spage=361&rft.epage=370&rft.pages=361-370&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540254366&rft.isbn_list=9783540254362&rft_id=info:doi/10.1007/978-3-540-31989-4_33&rft_dat=%3Cpascalfrancis_sprin%3E17026811%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3540319891&rft.eisbn_list=9783540319894&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true