A Novel Application of Evolutionary Computing in Process Systems Engineering

In this article we present a Multi-Objective Genetic Algorithm for Initialization (MOGAI) that finds a starting sensor configuration for Observability Analysis (OA), this study being a crucial stage in the design and revamp of process-plant instrumentation. The MOGAI is a binary-coded genetic algori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Carballido, Jessica Andrea, Ponzoni, Ignacio, Brignole, Nélida Beatriz
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 12
container_title
container_volume
creator Carballido, Jessica Andrea
Ponzoni, Ignacio
Brignole, Nélida Beatriz
description In this article we present a Multi-Objective Genetic Algorithm for Initialization (MOGAI) that finds a starting sensor configuration for Observability Analysis (OA), this study being a crucial stage in the design and revamp of process-plant instrumentation. The MOGAI is a binary-coded genetic algorithm with a three-objective fitness function based on cost, reliability and observability metrics. MOGAI’s special features are: dynamic adaptive bit-flip mutation and guided generation of the initial population, both giving a special treatment to non-feasible individuals, and an adaptive genotypic convergence criterion to stop the algorithm. The algorithmic behavior was evaluated through the analysis of the mathematical model that represents an ammonia synthesis plant. Its efficacy was assessed by comparing the performance of the OA algorithm with and without MOGAI initialization. The genetic algorithm proved to be advantageous because it led to a significant reduction in the number of iterations required by the OA algorithm.
doi_str_mv 10.1007/978-3-540-31996-2_2
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17026769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17026769</sourcerecordid><originalsourceid>FETCH-LOGICAL-p227t-6a09fe61cc25640b97ec439c2ddc6b413c5547bd6875a614654551ef5c5b56173</originalsourceid><addsrcrecordid>eNo9kFtLAzEQheMNLLW_wJe8-BjNZHJpHkupFygqqM8hm2bL6nazbGrBf2_aivMyzDmH4fARcg38Fjg3d9ZMGTIlOUOwVjPhxAmZFBWLdpDEKRmBBmCI0p79e0IhGnFORhy5YNZIvCSTnD95GQSjjBmR5Yw-p11s6azv2yb4bZM6mmq62KX2e3_44YfO06YvR7emTUdfhxRizvTtJ2_jJtNFt266GIdiX5GL2rc5Tv72mHzcL97nj2z58vA0ny1ZL4TZMu25raOGEITSklfWxCDRBrFaBV1JwKCUNNVKT43yGqRWUimItQqqUhoMjsnN8W_vc_BtPfguNNn1Q7MpdR0YLrTRtuTgmMv9vl4cXJXSV3bA3Z6sK5wcukLKHTC6QhZ_Af-NZeY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Novel Application of Evolutionary Computing in Process Systems Engineering</title><source>Springer Books</source><creator>Carballido, Jessica Andrea ; Ponzoni, Ignacio ; Brignole, Nélida Beatriz</creator><contributor>Raidl, Günther R. ; Gottlieb, Jens</contributor><creatorcontrib>Carballido, Jessica Andrea ; Ponzoni, Ignacio ; Brignole, Nélida Beatriz ; Raidl, Günther R. ; Gottlieb, Jens</creatorcontrib><description>In this article we present a Multi-Objective Genetic Algorithm for Initialization (MOGAI) that finds a starting sensor configuration for Observability Analysis (OA), this study being a crucial stage in the design and revamp of process-plant instrumentation. The MOGAI is a binary-coded genetic algorithm with a three-objective fitness function based on cost, reliability and observability metrics. MOGAI’s special features are: dynamic adaptive bit-flip mutation and guided generation of the initial population, both giving a special treatment to non-feasible individuals, and an adaptive genotypic convergence criterion to stop the algorithm. The algorithmic behavior was evaluated through the analysis of the mathematical model that represents an ammonia synthesis plant. Its efficacy was assessed by comparing the performance of the OA algorithm with and without MOGAI initialization. The genetic algorithm proved to be advantageous because it led to a significant reduction in the number of iterations required by the OA algorithm.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540253372</identifier><identifier>ISBN: 3540253378</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540319962</identifier><identifier>EISBN: 3540319964</identifier><identifier>DOI: 10.1007/978-3-540-31996-2_2</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Combinatorial Optimization Problem ; Computer science; control theory; systems ; Control theory. Systems ; Exact sciences and technology ; Flows in networks. Combinatorial problems ; Logical, boolean and switching functions ; Multi-Objective Genetic Algorithm ; Observability Analysis ; Operational research and scientific management ; Operational research. Management science ; Process control. Computer integrated manufacturing ; Process-Plant Instrumentation Design ; PSE ; Theoretical computing</subject><ispartof>Evolutionary Computation in Combinatorial Optimization, 2005, p.12-22</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-540-31996-2_2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-540-31996-2_2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17026769$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Raidl, Günther R.</contributor><contributor>Gottlieb, Jens</contributor><creatorcontrib>Carballido, Jessica Andrea</creatorcontrib><creatorcontrib>Ponzoni, Ignacio</creatorcontrib><creatorcontrib>Brignole, Nélida Beatriz</creatorcontrib><title>A Novel Application of Evolutionary Computing in Process Systems Engineering</title><title>Evolutionary Computation in Combinatorial Optimization</title><description>In this article we present a Multi-Objective Genetic Algorithm for Initialization (MOGAI) that finds a starting sensor configuration for Observability Analysis (OA), this study being a crucial stage in the design and revamp of process-plant instrumentation. The MOGAI is a binary-coded genetic algorithm with a three-objective fitness function based on cost, reliability and observability metrics. MOGAI’s special features are: dynamic adaptive bit-flip mutation and guided generation of the initial population, both giving a special treatment to non-feasible individuals, and an adaptive genotypic convergence criterion to stop the algorithm. The algorithmic behavior was evaluated through the analysis of the mathematical model that represents an ammonia synthesis plant. Its efficacy was assessed by comparing the performance of the OA algorithm with and without MOGAI initialization. The genetic algorithm proved to be advantageous because it led to a significant reduction in the number of iterations required by the OA algorithm.</description><subject>Applied sciences</subject><subject>Combinatorial Optimization Problem</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Flows in networks. Combinatorial problems</subject><subject>Logical, boolean and switching functions</subject><subject>Multi-Objective Genetic Algorithm</subject><subject>Observability Analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Process control. Computer integrated manufacturing</subject><subject>Process-Plant Instrumentation Design</subject><subject>PSE</subject><subject>Theoretical computing</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540253372</isbn><isbn>3540253378</isbn><isbn>9783540319962</isbn><isbn>3540319964</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNo9kFtLAzEQheMNLLW_wJe8-BjNZHJpHkupFygqqM8hm2bL6nazbGrBf2_aivMyzDmH4fARcg38Fjg3d9ZMGTIlOUOwVjPhxAmZFBWLdpDEKRmBBmCI0p79e0IhGnFORhy5YNZIvCSTnD95GQSjjBmR5Yw-p11s6azv2yb4bZM6mmq62KX2e3_44YfO06YvR7emTUdfhxRizvTtJ2_jJtNFt266GIdiX5GL2rc5Tv72mHzcL97nj2z58vA0ny1ZL4TZMu25raOGEITSklfWxCDRBrFaBV1JwKCUNNVKT43yGqRWUimItQqqUhoMjsnN8W_vc_BtPfguNNn1Q7MpdR0YLrTRtuTgmMv9vl4cXJXSV3bA3Z6sK5wcukLKHTC6QhZ_Af-NZeY</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Carballido, Jessica Andrea</creator><creator>Ponzoni, Ignacio</creator><creator>Brignole, Nélida Beatriz</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>A Novel Application of Evolutionary Computing in Process Systems Engineering</title><author>Carballido, Jessica Andrea ; Ponzoni, Ignacio ; Brignole, Nélida Beatriz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p227t-6a09fe61cc25640b97ec439c2ddc6b413c5547bd6875a614654551ef5c5b56173</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Combinatorial Optimization Problem</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Flows in networks. Combinatorial problems</topic><topic>Logical, boolean and switching functions</topic><topic>Multi-Objective Genetic Algorithm</topic><topic>Observability Analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Process control. Computer integrated manufacturing</topic><topic>Process-Plant Instrumentation Design</topic><topic>PSE</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carballido, Jessica Andrea</creatorcontrib><creatorcontrib>Ponzoni, Ignacio</creatorcontrib><creatorcontrib>Brignole, Nélida Beatriz</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carballido, Jessica Andrea</au><au>Ponzoni, Ignacio</au><au>Brignole, Nélida Beatriz</au><au>Raidl, Günther R.</au><au>Gottlieb, Jens</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Novel Application of Evolutionary Computing in Process Systems Engineering</atitle><btitle>Evolutionary Computation in Combinatorial Optimization</btitle><date>2005</date><risdate>2005</risdate><spage>12</spage><epage>22</epage><pages>12-22</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540253372</isbn><isbn>3540253378</isbn><eisbn>9783540319962</eisbn><eisbn>3540319964</eisbn><abstract>In this article we present a Multi-Objective Genetic Algorithm for Initialization (MOGAI) that finds a starting sensor configuration for Observability Analysis (OA), this study being a crucial stage in the design and revamp of process-plant instrumentation. The MOGAI is a binary-coded genetic algorithm with a three-objective fitness function based on cost, reliability and observability metrics. MOGAI’s special features are: dynamic adaptive bit-flip mutation and guided generation of the initial population, both giving a special treatment to non-feasible individuals, and an adaptive genotypic convergence criterion to stop the algorithm. The algorithmic behavior was evaluated through the analysis of the mathematical model that represents an ammonia synthesis plant. Its efficacy was assessed by comparing the performance of the OA algorithm with and without MOGAI initialization. The genetic algorithm proved to be advantageous because it led to a significant reduction in the number of iterations required by the OA algorithm.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-540-31996-2_2</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Evolutionary Computation in Combinatorial Optimization, 2005, p.12-22
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17026769
source Springer Books
subjects Applied sciences
Combinatorial Optimization Problem
Computer science
control theory
systems
Control theory. Systems
Exact sciences and technology
Flows in networks. Combinatorial problems
Logical, boolean and switching functions
Multi-Objective Genetic Algorithm
Observability Analysis
Operational research and scientific management
Operational research. Management science
Process control. Computer integrated manufacturing
Process-Plant Instrumentation Design
PSE
Theoretical computing
title A Novel Application of Evolutionary Computing in Process Systems Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A26%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Novel%20Application%20of%20Evolutionary%20Computing%20in%20Process%20Systems%20Engineering&rft.btitle=Evolutionary%20Computation%20in%20Combinatorial%20Optimization&rft.au=Carballido,%20Jessica%20Andrea&rft.date=2005&rft.spage=12&rft.epage=22&rft.pages=12-22&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540253372&rft.isbn_list=3540253378&rft_id=info:doi/10.1007/978-3-540-31996-2_2&rft_dat=%3Cpascalfrancis_sprin%3E17026769%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540319962&rft.eisbn_list=3540319964&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true