Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation
In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similar...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | |
container_start_page | 316 |
container_title | |
container_volume | |
creator | Oh, Sung-Kwun Park, Keon-Jun Pedrycz, Witold |
description | In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Information granulation realized with Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is evaluated with using two numerical examples and is contrasted with the performance of conventional fuzzy models in the literature. |
doi_str_mv | 10.1007/11526018_31 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17011193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17011193</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-6227f01463405d3e8f5d54001e88c00edfa0f531f96c3047472d94072995d6223</originalsourceid><addsrcrecordid>eNpVUE1PwzAMDV8SY-zEH8iFA4eCHadNcoSJjUmTdoCdq9AmU2Ftp6Y7bL-ejO0Avjzbz8-yH2N3CI8IoJ4QU5EB6pzwjI2M0pRKINQRz9kAM8SESJoLdnMghNIK4ZINgEAkRkm6ZqMQviAGCamNHrDVYtNXdbW3fdU2vPV8st3vd_x9F3pXB_5igyt5ZE5t1_NlqJoVn7rG9VXB_8ltU_JZ49uuPtbTzjbb9W9-y668XQc3OuGQLSevH-O3ZL6YzsbP82Qj0PRJJoTygDIjCWlJTvu0jJ8AOq0LAFd6Cz4l9CYrCKSSSpRGghLGpGUU05DdH_dubCjs2scLiirkm66qbbfLUQEiGopzD8e5EKlm5br8s22_Q46QH5zO_zhNPwEPamo</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation</title><source>Springer Books</source><creator>Oh, Sung-Kwun ; Park, Keon-Jun ; Pedrycz, Witold</creator><contributor>Torra, Vicenç ; Narukawa, Yasuo ; Miyamoto, Sadaaki</contributor><creatorcontrib>Oh, Sung-Kwun ; Park, Keon-Jun ; Pedrycz, Witold ; Torra, Vicenç ; Narukawa, Yasuo ; Miyamoto, Sadaaki</creatorcontrib><description>In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Information granulation realized with Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is evaluated with using two numerical examples and is contrasted with the performance of conventional fuzzy models in the literature.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540278710</identifier><identifier>ISBN: 9783540278719</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318835</identifier><identifier>EISBN: 3540318836</identifier><identifier>DOI: 10.1007/11526018_31</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Fuzzy Model ; Fuzzy Rule ; Fuzzy System ; Learning and adaptive systems ; Membership Function ; Performance Index</subject><ispartof>Lecture notes in computer science, 2005, p.316-327</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11526018_31$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11526018_31$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17011193$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Torra, Vicenç</contributor><contributor>Narukawa, Yasuo</contributor><contributor>Miyamoto, Sadaaki</contributor><creatorcontrib>Oh, Sung-Kwun</creatorcontrib><creatorcontrib>Park, Keon-Jun</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><title>Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation</title><title>Lecture notes in computer science</title><description>In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Information granulation realized with Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is evaluated with using two numerical examples and is contrasted with the performance of conventional fuzzy models in the literature.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Model</subject><subject>Fuzzy Rule</subject><subject>Fuzzy System</subject><subject>Learning and adaptive systems</subject><subject>Membership Function</subject><subject>Performance Index</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540278710</isbn><isbn>9783540278719</isbn><isbn>9783540318835</isbn><isbn>3540318836</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVUE1PwzAMDV8SY-zEH8iFA4eCHadNcoSJjUmTdoCdq9AmU2Ftp6Y7bL-ejO0Avjzbz8-yH2N3CI8IoJ4QU5EB6pzwjI2M0pRKINQRz9kAM8SESJoLdnMghNIK4ZINgEAkRkm6ZqMQviAGCamNHrDVYtNXdbW3fdU2vPV8st3vd_x9F3pXB_5igyt5ZE5t1_NlqJoVn7rG9VXB_8ltU_JZ49uuPtbTzjbb9W9-y668XQc3OuGQLSevH-O3ZL6YzsbP82Qj0PRJJoTygDIjCWlJTvu0jJ8AOq0LAFd6Cz4l9CYrCKSSSpRGghLGpGUU05DdH_dubCjs2scLiirkm66qbbfLUQEiGopzD8e5EKlm5br8s22_Q46QH5zO_zhNPwEPamo</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Oh, Sung-Kwun</creator><creator>Park, Keon-Jun</creator><creator>Pedrycz, Witold</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation</title><author>Oh, Sung-Kwun ; Park, Keon-Jun ; Pedrycz, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-6227f01463405d3e8f5d54001e88c00edfa0f531f96c3047472d94072995d6223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Model</topic><topic>Fuzzy Rule</topic><topic>Fuzzy System</topic><topic>Learning and adaptive systems</topic><topic>Membership Function</topic><topic>Performance Index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Sung-Kwun</creatorcontrib><creatorcontrib>Park, Keon-Jun</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Sung-Kwun</au><au>Park, Keon-Jun</au><au>Pedrycz, Witold</au><au>Torra, Vicenç</au><au>Narukawa, Yasuo</au><au>Miyamoto, Sadaaki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>316</spage><epage>327</epage><pages>316-327</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540278710</isbn><isbn>9783540278719</isbn><eisbn>9783540318835</eisbn><eisbn>3540318836</eisbn><abstract>In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Information granulation realized with Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is evaluated with using two numerical examples and is contrasted with the performance of conventional fuzzy models in the literature.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11526018_31</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Lecture notes in computer science, 2005, p.316-327 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17011193 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Fuzzy Model Fuzzy Rule Fuzzy System Learning and adaptive systems Membership Function Performance Index |
title | Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20of%20Fuzzy%20Systems%20Based%20on%20Fuzzy%20Set%20Using%20Genetic%20Optimization%20and%20Information%20Granulation&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Oh,%20Sung-Kwun&rft.date=2005&rft.spage=316&rft.epage=327&rft.pages=316-327&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540278710&rft.isbn_list=9783540278719&rft_id=info:doi/10.1007/11526018_31&rft_dat=%3Cpascalfrancis_sprin%3E17011193%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318835&rft.eisbn_list=3540318836&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |