Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation

In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Oh, Sung-Kwun, Park, Keon-Jun, Pedrycz, Witold
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 327
container_issue
container_start_page 316
container_title
container_volume
creator Oh, Sung-Kwun
Park, Keon-Jun
Pedrycz, Witold
description In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Information granulation realized with Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is evaluated with using two numerical examples and is contrasted with the performance of conventional fuzzy models in the literature.
doi_str_mv 10.1007/11526018_31
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17011193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17011193</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-6227f01463405d3e8f5d54001e88c00edfa0f531f96c3047472d94072995d6223</originalsourceid><addsrcrecordid>eNpVUE1PwzAMDV8SY-zEH8iFA4eCHadNcoSJjUmTdoCdq9AmU2Ftp6Y7bL-ejO0Avjzbz8-yH2N3CI8IoJ4QU5EB6pzwjI2M0pRKINQRz9kAM8SESJoLdnMghNIK4ZINgEAkRkm6ZqMQviAGCamNHrDVYtNXdbW3fdU2vPV8st3vd_x9F3pXB_5igyt5ZE5t1_NlqJoVn7rG9VXB_8ltU_JZ49uuPtbTzjbb9W9-y668XQc3OuGQLSevH-O3ZL6YzsbP82Qj0PRJJoTygDIjCWlJTvu0jJ8AOq0LAFd6Cz4l9CYrCKSSSpRGghLGpGUU05DdH_dubCjs2scLiirkm66qbbfLUQEiGopzD8e5EKlm5br8s22_Q46QH5zO_zhNPwEPamo</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation</title><source>Springer Books</source><creator>Oh, Sung-Kwun ; Park, Keon-Jun ; Pedrycz, Witold</creator><contributor>Torra, Vicenç ; Narukawa, Yasuo ; Miyamoto, Sadaaki</contributor><creatorcontrib>Oh, Sung-Kwun ; Park, Keon-Jun ; Pedrycz, Witold ; Torra, Vicenç ; Narukawa, Yasuo ; Miyamoto, Sadaaki</creatorcontrib><description>In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Information granulation realized with Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is evaluated with using two numerical examples and is contrasted with the performance of conventional fuzzy models in the literature.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3540278710</identifier><identifier>ISBN: 9783540278719</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540318835</identifier><identifier>EISBN: 3540318836</identifier><identifier>DOI: 10.1007/11526018_31</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Fuzzy Model ; Fuzzy Rule ; Fuzzy System ; Learning and adaptive systems ; Membership Function ; Performance Index</subject><ispartof>Lecture notes in computer science, 2005, p.316-327</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11526018_31$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11526018_31$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4035,4036,27904,38234,41421,42490</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17011193$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Torra, Vicenç</contributor><contributor>Narukawa, Yasuo</contributor><contributor>Miyamoto, Sadaaki</contributor><creatorcontrib>Oh, Sung-Kwun</creatorcontrib><creatorcontrib>Park, Keon-Jun</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><title>Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation</title><title>Lecture notes in computer science</title><description>In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Information granulation realized with Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is evaluated with using two numerical examples and is contrasted with the performance of conventional fuzzy models in the literature.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fuzzy Model</subject><subject>Fuzzy Rule</subject><subject>Fuzzy System</subject><subject>Learning and adaptive systems</subject><subject>Membership Function</subject><subject>Performance Index</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3540278710</isbn><isbn>9783540278719</isbn><isbn>9783540318835</isbn><isbn>3540318836</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpVUE1PwzAMDV8SY-zEH8iFA4eCHadNcoSJjUmTdoCdq9AmU2Ftp6Y7bL-ejO0Avjzbz8-yH2N3CI8IoJ4QU5EB6pzwjI2M0pRKINQRz9kAM8SESJoLdnMghNIK4ZINgEAkRkm6ZqMQviAGCamNHrDVYtNXdbW3fdU2vPV8st3vd_x9F3pXB_5igyt5ZE5t1_NlqJoVn7rG9VXB_8ltU_JZ49uuPtbTzjbb9W9-y668XQc3OuGQLSevH-O3ZL6YzsbP82Qj0PRJJoTygDIjCWlJTvu0jJ8AOq0LAFd6Cz4l9CYrCKSSSpRGghLGpGUU05DdH_dubCjs2scLiirkm66qbbfLUQEiGopzD8e5EKlm5br8s22_Q46QH5zO_zhNPwEPamo</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Oh, Sung-Kwun</creator><creator>Park, Keon-Jun</creator><creator>Pedrycz, Witold</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation</title><author>Oh, Sung-Kwun ; Park, Keon-Jun ; Pedrycz, Witold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-6227f01463405d3e8f5d54001e88c00edfa0f531f96c3047472d94072995d6223</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fuzzy Model</topic><topic>Fuzzy Rule</topic><topic>Fuzzy System</topic><topic>Learning and adaptive systems</topic><topic>Membership Function</topic><topic>Performance Index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Sung-Kwun</creatorcontrib><creatorcontrib>Park, Keon-Jun</creatorcontrib><creatorcontrib>Pedrycz, Witold</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Sung-Kwun</au><au>Park, Keon-Jun</au><au>Pedrycz, Witold</au><au>Torra, Vicenç</au><au>Narukawa, Yasuo</au><au>Miyamoto, Sadaaki</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation</atitle><btitle>Lecture notes in computer science</btitle><date>2005</date><risdate>2005</risdate><spage>316</spage><epage>327</epage><pages>316-327</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3540278710</isbn><isbn>9783540278719</isbn><eisbn>9783540318835</eisbn><eisbn>3540318836</eisbn><abstract>In this study, we propose a fuzzy inference systems based on information granulation to carry out the model identification of complex and nonlinear systems. Information granules are sought as associated collections of objects (data, in particular) drawn together by the criteria of proximity, similarity, or functionality. Information granulation realized with Hard C-Means (HCM) clustering help determine the initial parameters of fuzzy model such as the initial apexes of the membership functions and the initial values of polynomial functions being used in the premise and consequence part of the fuzzy rules. And the initial parameters are tuned effectively with the aid of the genetic algorithms and the least square method (LSM). The proposed model is evaluated with using two numerical examples and is contrasted with the performance of conventional fuzzy models in the literature.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11526018_31</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture notes in computer science, 2005, p.316-327
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17011193
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Fuzzy Model
Fuzzy Rule
Fuzzy System
Learning and adaptive systems
Membership Function
Performance Index
title Optimization of Fuzzy Systems Based on Fuzzy Set Using Genetic Optimization and Information Granulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimization%20of%20Fuzzy%20Systems%20Based%20on%20Fuzzy%20Set%20Using%20Genetic%20Optimization%20and%20Information%20Granulation&rft.btitle=Lecture%20notes%20in%20computer%20science&rft.au=Oh,%20Sung-Kwun&rft.date=2005&rft.spage=316&rft.epage=327&rft.pages=316-327&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3540278710&rft.isbn_list=9783540278719&rft_id=info:doi/10.1007/11526018_31&rft_dat=%3Cpascalfrancis_sprin%3E17011193%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540318835&rft.eisbn_list=3540318836&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true