Automatic Image Annotation Based on Topic-Based Smoothing

Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhou, Xiangdong, Ye, Jianye, Chen, Lian, Zhang, Liang, Shi, Baile
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue
container_start_page 86
container_title
container_volume
creator Zhou, Xiangdong
Ye, Jianye
Chen, Lian
Zhang, Liang
Shi, Baile
description Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride approaches. The effects of these methods suffer from the sparseness of the image blobs. As a result, the estimated joint distribution is need to be “smoothed”. In this paper, we present a topic-based smoothing method to overcome the sparseness problems, and integrated with a general image annotation model. Experimental results on 5,000 images demonstrate that our method can achieves significant improvement in annotation effectiveness over an existing method.
doi_str_mv 10.1007/11508069_12
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17010833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17010833</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-8fb3a2476d5fe718dc5f4f2ae2941b6e2298a0c858f887ceb8176e7f8904de483</originalsourceid><addsrcrecordid>eNpNUD1PwzAUNF8SVenEH8jCwBB4z3bs57FUfFSqxECZLSexS6CJozgM_HuCihC33J3udMMxdolwgwD6FrEAAmUs8iO2MJpEIUGgMgKO2QwVYi6ENCd_GVdGc3nKZiCA50ZLcc4WKb3DBIEktJoxs_wcY-vGpsrWrdv5bNl1cZx87LI7l3ydTWIb-6bKD_aljXF8a7rdBTsLbp_84pfn7PXhfrt6yjfPj-vVcpP3HM2YUyiF41KrugheI9VVEWTgznMjsVSec0MOKiooEOnKl4RaeR3IgKy9JDFnV4fd3qXK7cPguqpJth-a1g1fFjUgkBBT7_rQS1PU7fxgyxg_kkWwP_fZf_eJbwKZWsg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Image Annotation Based on Topic-Based Smoothing</title><source>Springer Books</source><creator>Zhou, Xiangdong ; Ye, Jianye ; Chen, Lian ; Zhang, Liang ; Shi, Baile</creator><contributor>Maire, Frederic ; Gallagher, Marcus ; Hogan, James P.</contributor><creatorcontrib>Zhou, Xiangdong ; Ye, Jianye ; Chen, Lian ; Zhang, Liang ; Shi, Baile ; Maire, Frederic ; Gallagher, Marcus ; Hogan, James P.</creatorcontrib><description>Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride approaches. The effects of these methods suffer from the sparseness of the image blobs. As a result, the estimated joint distribution is need to be “smoothed”. In this paper, we present a topic-based smoothing method to overcome the sparseness problems, and integrated with a general image annotation model. Experimental results on 5,000 images demonstrate that our method can achieves significant improvement in annotation effectiveness over an existing method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540269724</identifier><identifier>ISBN: 354026972X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540316930</identifier><identifier>EISBN: 3540316930</identifier><identifier>DOI: 10.1007/11508069_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Intelligent Data Engineering and Automated Learning - IDEAL 2005, 2005, p.86-93</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11508069_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11508069_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17010833$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Maire, Frederic</contributor><contributor>Gallagher, Marcus</contributor><contributor>Hogan, James P.</contributor><creatorcontrib>Zhou, Xiangdong</creatorcontrib><creatorcontrib>Ye, Jianye</creatorcontrib><creatorcontrib>Chen, Lian</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Shi, Baile</creatorcontrib><title>Automatic Image Annotation Based on Topic-Based Smoothing</title><title>Intelligent Data Engineering and Automated Learning - IDEAL 2005</title><description>Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride approaches. The effects of these methods suffer from the sparseness of the image blobs. As a result, the estimated joint distribution is need to be “smoothed”. In this paper, we present a topic-based smoothing method to overcome the sparseness problems, and integrated with a general image annotation model. Experimental results on 5,000 images demonstrate that our method can achieves significant improvement in annotation effectiveness over an existing method.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540269724</isbn><isbn>354026972X</isbn><isbn>9783540316930</isbn><isbn>3540316930</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUD1PwzAUNF8SVenEH8jCwBB4z3bs57FUfFSqxECZLSexS6CJozgM_HuCihC33J3udMMxdolwgwD6FrEAAmUs8iO2MJpEIUGgMgKO2QwVYi6ENCd_GVdGc3nKZiCA50ZLcc4WKb3DBIEktJoxs_wcY-vGpsrWrdv5bNl1cZx87LI7l3ydTWIb-6bKD_aljXF8a7rdBTsLbp_84pfn7PXhfrt6yjfPj-vVcpP3HM2YUyiF41KrugheI9VVEWTgznMjsVSec0MOKiooEOnKl4RaeR3IgKy9JDFnV4fd3qXK7cPguqpJth-a1g1fFjUgkBBT7_rQS1PU7fxgyxg_kkWwP_fZf_eJbwKZWsg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Zhou, Xiangdong</creator><creator>Ye, Jianye</creator><creator>Chen, Lian</creator><creator>Zhang, Liang</creator><creator>Shi, Baile</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Automatic Image Annotation Based on Topic-Based Smoothing</title><author>Zhou, Xiangdong ; Ye, Jianye ; Chen, Lian ; Zhang, Liang ; Shi, Baile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-8fb3a2476d5fe718dc5f4f2ae2941b6e2298a0c858f887ceb8176e7f8904de483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiangdong</creatorcontrib><creatorcontrib>Ye, Jianye</creatorcontrib><creatorcontrib>Chen, Lian</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Shi, Baile</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiangdong</au><au>Ye, Jianye</au><au>Chen, Lian</au><au>Zhang, Liang</au><au>Shi, Baile</au><au>Maire, Frederic</au><au>Gallagher, Marcus</au><au>Hogan, James P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Image Annotation Based on Topic-Based Smoothing</atitle><btitle>Intelligent Data Engineering and Automated Learning - IDEAL 2005</btitle><date>2005</date><risdate>2005</risdate><spage>86</spage><epage>93</epage><pages>86-93</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540269724</isbn><isbn>354026972X</isbn><eisbn>9783540316930</eisbn><eisbn>3540316930</eisbn><abstract>Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride approaches. The effects of these methods suffer from the sparseness of the image blobs. As a result, the estimated joint distribution is need to be “smoothed”. In this paper, we present a topic-based smoothing method to overcome the sparseness problems, and integrated with a general image annotation model. Experimental results on 5,000 images demonstrate that our method can achieves significant improvement in annotation effectiveness over an existing method.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11508069_12</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Intelligent Data Engineering and Automated Learning - IDEAL 2005, 2005, p.86-93
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17010833
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
title Automatic Image Annotation Based on Topic-Based Smoothing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Image%20Annotation%20Based%20on%20Topic-Based%20Smoothing&rft.btitle=Intelligent%20Data%20Engineering%20and%20Automated%20Learning%20-%20IDEAL%202005&rft.au=Zhou,%20Xiangdong&rft.date=2005&rft.spage=86&rft.epage=93&rft.pages=86-93&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540269724&rft.isbn_list=354026972X&rft_id=info:doi/10.1007/11508069_12&rft_dat=%3Cpascalfrancis_sprin%3E17010833%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540316930&rft.eisbn_list=3540316930&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true