Automatic Image Annotation Based on Topic-Based Smoothing
Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride ap...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | |
container_start_page | 86 |
container_title | |
container_volume | |
creator | Zhou, Xiangdong Ye, Jianye Chen, Lian Zhang, Liang Shi, Baile |
description | Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride approaches. The effects of these methods suffer from the sparseness of the image blobs. As a result, the estimated joint distribution is need to be “smoothed”. In this paper, we present a topic-based smoothing method to overcome the sparseness problems, and integrated with a general image annotation model. Experimental results on 5,000 images demonstrate that our method can achieves significant improvement in annotation effectiveness over an existing method. |
doi_str_mv | 10.1007/11508069_12 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17010833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17010833</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-8fb3a2476d5fe718dc5f4f2ae2941b6e2298a0c858f887ceb8176e7f8904de483</originalsourceid><addsrcrecordid>eNpNUD1PwzAUNF8SVenEH8jCwBB4z3bs57FUfFSqxECZLSexS6CJozgM_HuCihC33J3udMMxdolwgwD6FrEAAmUs8iO2MJpEIUGgMgKO2QwVYi6ENCd_GVdGc3nKZiCA50ZLcc4WKb3DBIEktJoxs_wcY-vGpsrWrdv5bNl1cZx87LI7l3ydTWIb-6bKD_aljXF8a7rdBTsLbp_84pfn7PXhfrt6yjfPj-vVcpP3HM2YUyiF41KrugheI9VVEWTgznMjsVSec0MOKiooEOnKl4RaeR3IgKy9JDFnV4fd3qXK7cPguqpJth-a1g1fFjUgkBBT7_rQS1PU7fxgyxg_kkWwP_fZf_eJbwKZWsg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Image Annotation Based on Topic-Based Smoothing</title><source>Springer Books</source><creator>Zhou, Xiangdong ; Ye, Jianye ; Chen, Lian ; Zhang, Liang ; Shi, Baile</creator><contributor>Maire, Frederic ; Gallagher, Marcus ; Hogan, James P.</contributor><creatorcontrib>Zhou, Xiangdong ; Ye, Jianye ; Chen, Lian ; Zhang, Liang ; Shi, Baile ; Maire, Frederic ; Gallagher, Marcus ; Hogan, James P.</creatorcontrib><description>Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride approaches. The effects of these methods suffer from the sparseness of the image blobs. As a result, the estimated joint distribution is need to be “smoothed”. In this paper, we present a topic-based smoothing method to overcome the sparseness problems, and integrated with a general image annotation model. Experimental results on 5,000 images demonstrate that our method can achieves significant improvement in annotation effectiveness over an existing method.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540269724</identifier><identifier>ISBN: 354026972X</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540316930</identifier><identifier>EISBN: 3540316930</identifier><identifier>DOI: 10.1007/11508069_12</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry</subject><ispartof>Intelligent Data Engineering and Automated Learning - IDEAL 2005, 2005, p.86-93</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11508069_12$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11508069_12$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17010833$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Maire, Frederic</contributor><contributor>Gallagher, Marcus</contributor><contributor>Hogan, James P.</contributor><creatorcontrib>Zhou, Xiangdong</creatorcontrib><creatorcontrib>Ye, Jianye</creatorcontrib><creatorcontrib>Chen, Lian</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Shi, Baile</creatorcontrib><title>Automatic Image Annotation Based on Topic-Based Smoothing</title><title>Intelligent Data Engineering and Automated Learning - IDEAL 2005</title><description>Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride approaches. The effects of these methods suffer from the sparseness of the image blobs. As a result, the estimated joint distribution is need to be “smoothed”. In this paper, we present a topic-based smoothing method to overcome the sparseness problems, and integrated with a general image annotation model. Experimental results on 5,000 images demonstrate that our method can achieves significant improvement in annotation effectiveness over an existing method.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540269724</isbn><isbn>354026972X</isbn><isbn>9783540316930</isbn><isbn>3540316930</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNUD1PwzAUNF8SVenEH8jCwBB4z3bs57FUfFSqxECZLSexS6CJozgM_HuCihC33J3udMMxdolwgwD6FrEAAmUs8iO2MJpEIUGgMgKO2QwVYi6ENCd_GVdGc3nKZiCA50ZLcc4WKb3DBIEktJoxs_wcY-vGpsrWrdv5bNl1cZx87LI7l3ydTWIb-6bKD_aljXF8a7rdBTsLbp_84pfn7PXhfrt6yjfPj-vVcpP3HM2YUyiF41KrugheI9VVEWTgznMjsVSec0MOKiooEOnKl4RaeR3IgKy9JDFnV4fd3qXK7cPguqpJth-a1g1fFjUgkBBT7_rQS1PU7fxgyxg_kkWwP_fZf_eJbwKZWsg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Zhou, Xiangdong</creator><creator>Ye, Jianye</creator><creator>Chen, Lian</creator><creator>Zhang, Liang</creator><creator>Shi, Baile</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Automatic Image Annotation Based on Topic-Based Smoothing</title><author>Zhou, Xiangdong ; Ye, Jianye ; Chen, Lian ; Zhang, Liang ; Shi, Baile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-8fb3a2476d5fe718dc5f4f2ae2941b6e2298a0c858f887ceb8176e7f8904de483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiangdong</creatorcontrib><creatorcontrib>Ye, Jianye</creatorcontrib><creatorcontrib>Chen, Lian</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Shi, Baile</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiangdong</au><au>Ye, Jianye</au><au>Chen, Lian</au><au>Zhang, Liang</au><au>Shi, Baile</au><au>Maire, Frederic</au><au>Gallagher, Marcus</au><au>Hogan, James P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Image Annotation Based on Topic-Based Smoothing</atitle><btitle>Intelligent Data Engineering and Automated Learning - IDEAL 2005</btitle><date>2005</date><risdate>2005</risdate><spage>86</spage><epage>93</epage><pages>86-93</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540269724</isbn><isbn>354026972X</isbn><eisbn>9783540316930</eisbn><eisbn>3540316930</eisbn><abstract>Automatic image annotation has attracted much attention recently, due to its wide applicability (such as image retrieval by semantics). Most of the known statistical model-based annotation methods learn the joint distribution of the keywords and the image blobs decomposed by segmentation or gride approaches. The effects of these methods suffer from the sparseness of the image blobs. As a result, the estimated joint distribution is need to be “smoothed”. In this paper, we present a topic-based smoothing method to overcome the sparseness problems, and integrated with a general image annotation model. Experimental results on 5,000 images demonstrate that our method can achieves significant improvement in annotation effectiveness over an existing method.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11508069_12</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Intelligent Data Engineering and Automated Learning - IDEAL 2005, 2005, p.86-93 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_17010833 |
source | Springer Books |
subjects | Applied sciences Artificial intelligence Computer science control theory systems Exact sciences and technology Pattern recognition. Digital image processing. Computational geometry |
title | Automatic Image Annotation Based on Topic-Based Smoothing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A19%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Image%20Annotation%20Based%20on%20Topic-Based%20Smoothing&rft.btitle=Intelligent%20Data%20Engineering%20and%20Automated%20Learning%20-%20IDEAL%202005&rft.au=Zhou,%20Xiangdong&rft.date=2005&rft.spage=86&rft.epage=93&rft.pages=86-93&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540269724&rft.isbn_list=354026972X&rft_id=info:doi/10.1007/11508069_12&rft_dat=%3Cpascalfrancis_sprin%3E17010833%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540316930&rft.eisbn_list=3540316930&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |