Image Classifier for the TJ-II Thomson Scattering Diagnostic: Evaluation with a Feed Forward Neural Network

There are two big stages to implement in a signal classification process: features extraction and signal classification. The present work shows up the development of an automated classifier based on the use of the Wavelet Transform to extract signal characteristics, and Neural Networks (Feed Forward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farias, G., Dormido, R., Santos, M., Duro, N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 612
container_issue
container_start_page 604
container_title
container_volume
creator Farias, G.
Dormido, R.
Santos, M.
Duro, N.
description There are two big stages to implement in a signal classification process: features extraction and signal classification. The present work shows up the development of an automated classifier based on the use of the Wavelet Transform to extract signal characteristics, and Neural Networks (Feed Forward type) to obtain decision rules. The classifier has been applied to the nuclear fusion environment (TJ-II stellarator), specifically to the Thomson Scattering diagnostic, which is devoted to measure density and temperature radial profiles. The aim of this work is to achieve an automated profile reconstruction from raw data without human intervention. Raw data processing depends on the image pattern obtained in the measurement and, therefore, an image classifier is required. The method reduces the 221.760 original features to only 900, being the success mean rate over 90%. This classifier has been programmed in MATLAB.
doi_str_mv 10.1007/11499305_62
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_17010817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17010817</sourcerecordid><originalsourceid>FETCH-LOGICAL-p219t-5a76808f5025f554ee155e6c594aaac35c0a2ca520bb2a6683eb1b430c8dba543</originalsourceid><addsrcrecordid>eNpNkD1PwzAYhM2XRFU68Qe8MDAEXn8mYUOlhaIKBsocvXGd1jSNIzul4t-TCoS45YZ7dNIdIZcMbhhAesuYzHMBqtD8iIzyNBNKgmA6FfyYDJhmLBFC5id_GdeC5ekpGYAAnuSpFOdkFOMH9JJKSwkDspltcWXpuMYYXeVsoJUPtFtbunhOZjO6WPtt9A19M9h1NrhmRR8crhofO2fu6OQT6x12rif2rltTpFNrl3Tqwx7Dkr7YXcC6t27vw-aCnFVYRzv69SF5n04W46dk_vo4G9_Pk5azvEsUpjqDrFLAVaWUtJYpZbVRuUREI5QB5AYVh7LkqHUmbMlKKcBkyxKVFENy9dPbYjRYVwEb42LRBrfF8FWwFBhkLO256x8utodhNhSl95tYMCgOhxf_DhffEy5smg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Image Classifier for the TJ-II Thomson Scattering Diagnostic: Evaluation with a Feed Forward Neural Network</title><source>Springer Books</source><creator>Farias, G. ; Dormido, R. ; Santos, M. ; Duro, N.</creator><contributor>Mira, José ; Álvarez, José R.</contributor><creatorcontrib>Farias, G. ; Dormido, R. ; Santos, M. ; Duro, N. ; Mira, José ; Álvarez, José R.</creatorcontrib><description>There are two big stages to implement in a signal classification process: features extraction and signal classification. The present work shows up the development of an automated classifier based on the use of the Wavelet Transform to extract signal characteristics, and Neural Networks (Feed Forward type) to obtain decision rules. The classifier has been applied to the nuclear fusion environment (TJ-II stellarator), specifically to the Thomson Scattering diagnostic, which is devoted to measure density and temperature radial profiles. The aim of this work is to achieve an automated profile reconstruction from raw data without human intervention. Raw data processing depends on the image pattern obtained in the measurement and, therefore, an image classifier is required. The method reduces the 221.760 original features to only 900, being the success mean rate over 90%. This classifier has been programmed in MATLAB.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540263197</identifier><identifier>ISBN: 3540263195</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540316732</identifier><identifier>EISBN: 3540316736</identifier><identifier>DOI: 10.1007/11499305_62</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Feed Forward Neural Network ; Mother Wavelet ; Neuronal Network ; Neutral Beam Injector ; Wavelet Transform</subject><ispartof>Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, 2005, p.604-612</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11499305_62$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11499305_62$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,775,776,780,785,786,789,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17010817$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Mira, José</contributor><contributor>Álvarez, José R.</contributor><creatorcontrib>Farias, G.</creatorcontrib><creatorcontrib>Dormido, R.</creatorcontrib><creatorcontrib>Santos, M.</creatorcontrib><creatorcontrib>Duro, N.</creatorcontrib><title>Image Classifier for the TJ-II Thomson Scattering Diagnostic: Evaluation with a Feed Forward Neural Network</title><title>Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach</title><description>There are two big stages to implement in a signal classification process: features extraction and signal classification. The present work shows up the development of an automated classifier based on the use of the Wavelet Transform to extract signal characteristics, and Neural Networks (Feed Forward type) to obtain decision rules. The classifier has been applied to the nuclear fusion environment (TJ-II stellarator), specifically to the Thomson Scattering diagnostic, which is devoted to measure density and temperature radial profiles. The aim of this work is to achieve an automated profile reconstruction from raw data without human intervention. Raw data processing depends on the image pattern obtained in the measurement and, therefore, an image classifier is required. The method reduces the 221.760 original features to only 900, being the success mean rate over 90%. This classifier has been programmed in MATLAB.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Feed Forward Neural Network</subject><subject>Mother Wavelet</subject><subject>Neuronal Network</subject><subject>Neutral Beam Injector</subject><subject>Wavelet Transform</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540263197</isbn><isbn>3540263195</isbn><isbn>9783540316732</isbn><isbn>3540316736</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkD1PwzAYhM2XRFU68Qe8MDAEXn8mYUOlhaIKBsocvXGd1jSNIzul4t-TCoS45YZ7dNIdIZcMbhhAesuYzHMBqtD8iIzyNBNKgmA6FfyYDJhmLBFC5id_GdeC5ekpGYAAnuSpFOdkFOMH9JJKSwkDspltcWXpuMYYXeVsoJUPtFtbunhOZjO6WPtt9A19M9h1NrhmRR8crhofO2fu6OQT6x12rif2rltTpFNrl3Tqwx7Dkr7YXcC6t27vw-aCnFVYRzv69SF5n04W46dk_vo4G9_Pk5azvEsUpjqDrFLAVaWUtJYpZbVRuUREI5QB5AYVh7LkqHUmbMlKKcBkyxKVFENy9dPbYjRYVwEb42LRBrfF8FWwFBhkLO256x8utodhNhSl95tYMCgOhxf_DhffEy5smg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Farias, G.</creator><creator>Dormido, R.</creator><creator>Santos, M.</creator><creator>Duro, N.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Image Classifier for the TJ-II Thomson Scattering Diagnostic: Evaluation with a Feed Forward Neural Network</title><author>Farias, G. ; Dormido, R. ; Santos, M. ; Duro, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p219t-5a76808f5025f554ee155e6c594aaac35c0a2ca520bb2a6683eb1b430c8dba543</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Feed Forward Neural Network</topic><topic>Mother Wavelet</topic><topic>Neuronal Network</topic><topic>Neutral Beam Injector</topic><topic>Wavelet Transform</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farias, G.</creatorcontrib><creatorcontrib>Dormido, R.</creatorcontrib><creatorcontrib>Santos, M.</creatorcontrib><creatorcontrib>Duro, N.</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farias, G.</au><au>Dormido, R.</au><au>Santos, M.</au><au>Duro, N.</au><au>Mira, José</au><au>Álvarez, José R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Image Classifier for the TJ-II Thomson Scattering Diagnostic: Evaluation with a Feed Forward Neural Network</atitle><btitle>Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach</btitle><date>2005</date><risdate>2005</risdate><spage>604</spage><epage>612</epage><pages>604-612</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540263197</isbn><isbn>3540263195</isbn><eisbn>9783540316732</eisbn><eisbn>3540316736</eisbn><abstract>There are two big stages to implement in a signal classification process: features extraction and signal classification. The present work shows up the development of an automated classifier based on the use of the Wavelet Transform to extract signal characteristics, and Neural Networks (Feed Forward type) to obtain decision rules. The classifier has been applied to the nuclear fusion environment (TJ-II stellarator), specifically to the Thomson Scattering diagnostic, which is devoted to measure density and temperature radial profiles. The aim of this work is to achieve an automated profile reconstruction from raw data without human intervention. Raw data processing depends on the image pattern obtained in the measurement and, therefore, an image classifier is required. The method reduces the 221.760 original features to only 900, being the success mean rate over 90%. This classifier has been programmed in MATLAB.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11499305_62</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach, 2005, p.604-612
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_17010817
source Springer Books
subjects Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Feed Forward Neural Network
Mother Wavelet
Neuronal Network
Neutral Beam Injector
Wavelet Transform
title Image Classifier for the TJ-II Thomson Scattering Diagnostic: Evaluation with a Feed Forward Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Image%20Classifier%20for%20the%20TJ-II%20Thomson%20Scattering%20Diagnostic:%20Evaluation%20with%20a%20Feed%20Forward%20Neural%20Network&rft.btitle=Artificial%20Intelligence%20and%20Knowledge%20Engineering%20Applications:%20A%20Bioinspired%20Approach&rft.au=Farias,%20G.&rft.date=2005&rft.spage=604&rft.epage=612&rft.pages=604-612&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540263197&rft.isbn_list=3540263195&rft_id=info:doi/10.1007/11499305_62&rft_dat=%3Cpascalfrancis_sprin%3E17010817%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540316732&rft.eisbn_list=3540316736&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true