Network Emergence in Immune System Shape Space

We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ruskin, Heather J., Burns, John
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1263
container_issue
container_start_page 1254
container_title
container_volume
creator Ruskin, Heather J.
Burns, John
description We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated effector T-cell clonotype and viral epitope are represented as nodes, and edges between nodes models the affinity or clearance pressure applied to the antigen presenting cell bearing the target epitope. When the model is repeatedly exposed to infection by heterologous or mutating viruses, a distinct topology of the network space emerges which parallels recent biological experimental results in the area of cytotoxic T-cell activation, apoptosis, crossreactivity, and memory – especially with respect to repeated reinfection. The model presented here is a stochastic agent-based approach, which allows a broad distribution of results to be studied by tuning crucial T-cell life-cycle probabilities.
doi_str_mv 10.1007/11424826_133
format Conference Proceeding
fullrecord <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16991784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16991784</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-8d5ecbb4f7b465eed28c17e8de96d85c52a649ad6568532df55f727a0d8747453</originalsourceid><addsrcrecordid>eNpNkMtKA0EURNsXGGN2fsBs3AgT-95-L0WiBoIuouump_tOjMlMhumI5O-NRMRVUdShFoexK-Bj4NzcAkiUFrUHIY7YyBkrlOQCuZTumA1AA5RCSHfyt6GyGvCUDbjgWDojxTm7yPmDc47G4YCNn2n7telXxaShfkFtpGLZFtOm-WypmO_ylppi_h66felCpEt2Vod1ptFvDtnbw-T1_qmcvTxO7-9mZYfIt6VNimJVydpUUiuihDaCIZvI6WRVVBi0dCFppa0SmGqlaoMm8GSNNFKJIbs-_HYhx7Cu-9DGZfZdv2xCv_OgnQNj5Z67OXB5P7UL6n212ayyB-5_jPn_xsQ3YAVWgg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Network Emergence in Immune System Shape Space</title><source>Springer Books</source><creator>Ruskin, Heather J. ; Burns, John</creator><contributor>Gervasi, Osvaldo ; Gavrilova, Marina L. ; Taniar, David ; Laganà, Antonio ; Mun, Youngsong ; Lee, Heow Pueh ; Tan, Chih Jeng Kenneth ; Kumar, Vipin</contributor><creatorcontrib>Ruskin, Heather J. ; Burns, John ; Gervasi, Osvaldo ; Gavrilova, Marina L. ; Taniar, David ; Laganà, Antonio ; Mun, Youngsong ; Lee, Heow Pueh ; Tan, Chih Jeng Kenneth ; Kumar, Vipin</creatorcontrib><description>We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated effector T-cell clonotype and viral epitope are represented as nodes, and edges between nodes models the affinity or clearance pressure applied to the antigen presenting cell bearing the target epitope. When the model is repeatedly exposed to infection by heterologous or mutating viruses, a distinct topology of the network space emerges which parallels recent biological experimental results in the area of cytotoxic T-cell activation, apoptosis, crossreactivity, and memory – especially with respect to repeated reinfection. The model presented here is a stochastic agent-based approach, which allows a broad distribution of results to be studied by tuning crucial T-cell life-cycle probabilities.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540258612</identifier><identifier>ISBN: 3540258612</identifier><identifier>ISBN: 9783540258605</identifier><identifier>ISBN: 3540258604</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540320449</identifier><identifier>EISBN: 354032044X</identifier><identifier>DOI: 10.1007/11424826_133</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Immunogenic Epitope ; Lymphocytic Choriomeningitis ; Network Emergence ; Real Space ; Shape Space</subject><ispartof>Computational Science and Its Applications – ICCSA 2005, 2005, p.1254-1263</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11424826_133$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11424826_133$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27914,38244,41431,42500</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16991784$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gervasi, Osvaldo</contributor><contributor>Gavrilova, Marina L.</contributor><contributor>Taniar, David</contributor><contributor>Laganà, Antonio</contributor><contributor>Mun, Youngsong</contributor><contributor>Lee, Heow Pueh</contributor><contributor>Tan, Chih Jeng Kenneth</contributor><contributor>Kumar, Vipin</contributor><creatorcontrib>Ruskin, Heather J.</creatorcontrib><creatorcontrib>Burns, John</creatorcontrib><title>Network Emergence in Immune System Shape Space</title><title>Computational Science and Its Applications – ICCSA 2005</title><description>We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated effector T-cell clonotype and viral epitope are represented as nodes, and edges between nodes models the affinity or clearance pressure applied to the antigen presenting cell bearing the target epitope. When the model is repeatedly exposed to infection by heterologous or mutating viruses, a distinct topology of the network space emerges which parallels recent biological experimental results in the area of cytotoxic T-cell activation, apoptosis, crossreactivity, and memory – especially with respect to repeated reinfection. The model presented here is a stochastic agent-based approach, which allows a broad distribution of results to be studied by tuning crucial T-cell life-cycle probabilities.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Immunogenic Epitope</subject><subject>Lymphocytic Choriomeningitis</subject><subject>Network Emergence</subject><subject>Real Space</subject><subject>Shape Space</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540258612</isbn><isbn>3540258612</isbn><isbn>9783540258605</isbn><isbn>3540258604</isbn><isbn>9783540320449</isbn><isbn>354032044X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkMtKA0EURNsXGGN2fsBs3AgT-95-L0WiBoIuouump_tOjMlMhumI5O-NRMRVUdShFoexK-Bj4NzcAkiUFrUHIY7YyBkrlOQCuZTumA1AA5RCSHfyt6GyGvCUDbjgWDojxTm7yPmDc47G4YCNn2n7telXxaShfkFtpGLZFtOm-WypmO_ylppi_h66felCpEt2Vod1ptFvDtnbw-T1_qmcvTxO7-9mZYfIt6VNimJVydpUUiuihDaCIZvI6WRVVBi0dCFppa0SmGqlaoMm8GSNNFKJIbs-_HYhx7Cu-9DGZfZdv2xCv_OgnQNj5Z67OXB5P7UL6n212ayyB-5_jPn_xsQ3YAVWgg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ruskin, Heather J.</creator><creator>Burns, John</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Network Emergence in Immune System Shape Space</title><author>Ruskin, Heather J. ; Burns, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-8d5ecbb4f7b465eed28c17e8de96d85c52a649ad6568532df55f727a0d8747453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Immunogenic Epitope</topic><topic>Lymphocytic Choriomeningitis</topic><topic>Network Emergence</topic><topic>Real Space</topic><topic>Shape Space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruskin, Heather J.</creatorcontrib><creatorcontrib>Burns, John</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruskin, Heather J.</au><au>Burns, John</au><au>Gervasi, Osvaldo</au><au>Gavrilova, Marina L.</au><au>Taniar, David</au><au>Laganà, Antonio</au><au>Mun, Youngsong</au><au>Lee, Heow Pueh</au><au>Tan, Chih Jeng Kenneth</au><au>Kumar, Vipin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Network Emergence in Immune System Shape Space</atitle><btitle>Computational Science and Its Applications – ICCSA 2005</btitle><date>2005</date><risdate>2005</risdate><spage>1254</spage><epage>1263</epage><pages>1254-1263</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540258612</isbn><isbn>3540258612</isbn><isbn>9783540258605</isbn><isbn>3540258604</isbn><eisbn>9783540320449</eisbn><eisbn>354032044X</eisbn><abstract>We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated effector T-cell clonotype and viral epitope are represented as nodes, and edges between nodes models the affinity or clearance pressure applied to the antigen presenting cell bearing the target epitope. When the model is repeatedly exposed to infection by heterologous or mutating viruses, a distinct topology of the network space emerges which parallels recent biological experimental results in the area of cytotoxic T-cell activation, apoptosis, crossreactivity, and memory – especially with respect to repeated reinfection. The model presented here is a stochastic agent-based approach, which allows a broad distribution of results to be studied by tuning crucial T-cell life-cycle probabilities.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11424826_133</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Computational Science and Its Applications – ICCSA 2005, 2005, p.1254-1263
issn 0302-9743
1611-3349
language eng
recordid cdi_pascalfrancis_primary_16991784
source Springer Books
subjects Applied sciences
Computer science
control theory
systems
Exact sciences and technology
Immunogenic Epitope
Lymphocytic Choriomeningitis
Network Emergence
Real Space
Shape Space
title Network Emergence in Immune System Shape Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Network%20Emergence%20in%20Immune%20System%20Shape%20Space&rft.btitle=Computational%20Science%20and%20Its%20Applications%20%E2%80%93%20ICCSA%202005&rft.au=Ruskin,%20Heather%20J.&rft.date=2005&rft.spage=1254&rft.epage=1263&rft.pages=1254-1263&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540258612&rft.isbn_list=3540258612&rft.isbn_list=9783540258605&rft.isbn_list=3540258604&rft_id=info:doi/10.1007/11424826_133&rft_dat=%3Cpascalfrancis_sprin%3E16991784%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540320449&rft.eisbn_list=354032044X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true