Network Emergence in Immune System Shape Space
We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated ef...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1263 |
---|---|
container_issue | |
container_start_page | 1254 |
container_title | |
container_volume | |
creator | Ruskin, Heather J. Burns, John |
description | We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated effector T-cell clonotype and viral epitope are represented as nodes, and edges between nodes models the affinity or clearance pressure applied to the antigen presenting cell bearing the target epitope. When the model is repeatedly exposed to infection by heterologous or mutating viruses, a distinct topology of the network space emerges which parallels recent biological experimental results in the area of cytotoxic T-cell activation, apoptosis, crossreactivity, and memory – especially with respect to repeated reinfection. The model presented here is a stochastic agent-based approach, which allows a broad distribution of results to be studied by tuning crucial T-cell life-cycle probabilities. |
doi_str_mv | 10.1007/11424826_133 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>pascalfrancis_sprin</sourceid><recordid>TN_cdi_pascalfrancis_primary_16991784</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16991784</sourcerecordid><originalsourceid>FETCH-LOGICAL-p220t-8d5ecbb4f7b465eed28c17e8de96d85c52a649ad6568532df55f727a0d8747453</originalsourceid><addsrcrecordid>eNpNkMtKA0EURNsXGGN2fsBs3AgT-95-L0WiBoIuouump_tOjMlMhumI5O-NRMRVUdShFoexK-Bj4NzcAkiUFrUHIY7YyBkrlOQCuZTumA1AA5RCSHfyt6GyGvCUDbjgWDojxTm7yPmDc47G4YCNn2n7telXxaShfkFtpGLZFtOm-WypmO_ylppi_h66felCpEt2Vod1ptFvDtnbw-T1_qmcvTxO7-9mZYfIt6VNimJVydpUUiuihDaCIZvI6WRVVBi0dCFppa0SmGqlaoMm8GSNNFKJIbs-_HYhx7Cu-9DGZfZdv2xCv_OgnQNj5Z67OXB5P7UL6n212ayyB-5_jPn_xsQ3YAVWgg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Network Emergence in Immune System Shape Space</title><source>Springer Books</source><creator>Ruskin, Heather J. ; Burns, John</creator><contributor>Gervasi, Osvaldo ; Gavrilova, Marina L. ; Taniar, David ; Laganà, Antonio ; Mun, Youngsong ; Lee, Heow Pueh ; Tan, Chih Jeng Kenneth ; Kumar, Vipin</contributor><creatorcontrib>Ruskin, Heather J. ; Burns, John ; Gervasi, Osvaldo ; Gavrilova, Marina L. ; Taniar, David ; Laganà, Antonio ; Mun, Youngsong ; Lee, Heow Pueh ; Tan, Chih Jeng Kenneth ; Kumar, Vipin</creatorcontrib><description>We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated effector T-cell clonotype and viral epitope are represented as nodes, and edges between nodes models the affinity or clearance pressure applied to the antigen presenting cell bearing the target epitope. When the model is repeatedly exposed to infection by heterologous or mutating viruses, a distinct topology of the network space emerges which parallels recent biological experimental results in the area of cytotoxic T-cell activation, apoptosis, crossreactivity, and memory – especially with respect to repeated reinfection. The model presented here is a stochastic agent-based approach, which allows a broad distribution of results to be studied by tuning crucial T-cell life-cycle probabilities.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 9783540258612</identifier><identifier>ISBN: 3540258612</identifier><identifier>ISBN: 9783540258605</identifier><identifier>ISBN: 3540258604</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 9783540320449</identifier><identifier>EISBN: 354032044X</identifier><identifier>DOI: 10.1007/11424826_133</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Immunogenic Epitope ; Lymphocytic Choriomeningitis ; Network Emergence ; Real Space ; Shape Space</subject><ispartof>Computational Science and Its Applications – ICCSA 2005, 2005, p.1254-1263</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/11424826_133$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/11424826_133$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,777,778,782,787,788,791,4038,4039,27914,38244,41431,42500</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16991784$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>Gervasi, Osvaldo</contributor><contributor>Gavrilova, Marina L.</contributor><contributor>Taniar, David</contributor><contributor>Laganà, Antonio</contributor><contributor>Mun, Youngsong</contributor><contributor>Lee, Heow Pueh</contributor><contributor>Tan, Chih Jeng Kenneth</contributor><contributor>Kumar, Vipin</contributor><creatorcontrib>Ruskin, Heather J.</creatorcontrib><creatorcontrib>Burns, John</creatorcontrib><title>Network Emergence in Immune System Shape Space</title><title>Computational Science and Its Applications – ICCSA 2005</title><description>We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated effector T-cell clonotype and viral epitope are represented as nodes, and edges between nodes models the affinity or clearance pressure applied to the antigen presenting cell bearing the target epitope. When the model is repeatedly exposed to infection by heterologous or mutating viruses, a distinct topology of the network space emerges which parallels recent biological experimental results in the area of cytotoxic T-cell activation, apoptosis, crossreactivity, and memory – especially with respect to repeated reinfection. The model presented here is a stochastic agent-based approach, which allows a broad distribution of results to be studied by tuning crucial T-cell life-cycle probabilities.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Immunogenic Epitope</subject><subject>Lymphocytic Choriomeningitis</subject><subject>Network Emergence</subject><subject>Real Space</subject><subject>Shape Space</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>9783540258612</isbn><isbn>3540258612</isbn><isbn>9783540258605</isbn><isbn>3540258604</isbn><isbn>9783540320449</isbn><isbn>354032044X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2005</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpNkMtKA0EURNsXGGN2fsBs3AgT-95-L0WiBoIuouump_tOjMlMhumI5O-NRMRVUdShFoexK-Bj4NzcAkiUFrUHIY7YyBkrlOQCuZTumA1AA5RCSHfyt6GyGvCUDbjgWDojxTm7yPmDc47G4YCNn2n7telXxaShfkFtpGLZFtOm-WypmO_ylppi_h66felCpEt2Vod1ptFvDtnbw-T1_qmcvTxO7-9mZYfIt6VNimJVydpUUiuihDaCIZvI6WRVVBi0dCFppa0SmGqlaoMm8GSNNFKJIbs-_HYhx7Cu-9DGZfZdv2xCv_OgnQNj5Z67OXB5P7UL6n212ayyB-5_jPn_xsQ3YAVWgg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Ruskin, Heather J.</creator><creator>Burns, John</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>IQODW</scope></search><sort><creationdate>2005</creationdate><title>Network Emergence in Immune System Shape Space</title><author>Ruskin, Heather J. ; Burns, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p220t-8d5ecbb4f7b465eed28c17e8de96d85c52a649ad6568532df55f727a0d8747453</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Immunogenic Epitope</topic><topic>Lymphocytic Choriomeningitis</topic><topic>Network Emergence</topic><topic>Real Space</topic><topic>Shape Space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruskin, Heather J.</creatorcontrib><creatorcontrib>Burns, John</creatorcontrib><collection>Pascal-Francis</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruskin, Heather J.</au><au>Burns, John</au><au>Gervasi, Osvaldo</au><au>Gavrilova, Marina L.</au><au>Taniar, David</au><au>Laganà, Antonio</au><au>Mun, Youngsong</au><au>Lee, Heow Pueh</au><au>Tan, Chih Jeng Kenneth</au><au>Kumar, Vipin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Network Emergence in Immune System Shape Space</atitle><btitle>Computational Science and Its Applications – ICCSA 2005</btitle><date>2005</date><risdate>2005</risdate><spage>1254</spage><epage>1263</epage><pages>1254-1263</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>9783540258612</isbn><isbn>3540258612</isbn><isbn>9783540258605</isbn><isbn>3540258604</isbn><eisbn>9783540320449</eisbn><eisbn>354032044X</eisbn><abstract>We present a model which enables us to study emergent principles of immune system T-cell repertoire self-organisation, based on a stochastic cellular automata model of a simplified lymphatic compartment. An extension of the immune system shape space formalism is developed such that each activated effector T-cell clonotype and viral epitope are represented as nodes, and edges between nodes models the affinity or clearance pressure applied to the antigen presenting cell bearing the target epitope. When the model is repeatedly exposed to infection by heterologous or mutating viruses, a distinct topology of the network space emerges which parallels recent biological experimental results in the area of cytotoxic T-cell activation, apoptosis, crossreactivity, and memory – especially with respect to repeated reinfection. The model presented here is a stochastic agent-based approach, which allows a broad distribution of results to be studied by tuning crucial T-cell life-cycle probabilities.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/11424826_133</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Computational Science and Its Applications – ICCSA 2005, 2005, p.1254-1263 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_pascalfrancis_primary_16991784 |
source | Springer Books |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Immunogenic Epitope Lymphocytic Choriomeningitis Network Emergence Real Space Shape Space |
title | Network Emergence in Immune System Shape Space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Network%20Emergence%20in%20Immune%20System%20Shape%20Space&rft.btitle=Computational%20Science%20and%20Its%20Applications%20%E2%80%93%20ICCSA%202005&rft.au=Ruskin,%20Heather%20J.&rft.date=2005&rft.spage=1254&rft.epage=1263&rft.pages=1254-1263&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=9783540258612&rft.isbn_list=3540258612&rft.isbn_list=9783540258605&rft.isbn_list=3540258604&rft_id=info:doi/10.1007/11424826_133&rft_dat=%3Cpascalfrancis_sprin%3E16991784%3C/pascalfrancis_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=9783540320449&rft.eisbn_list=354032044X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |